Studien und Whitepaper

In unseren Studien und Whitepapern beschreiben wir neueste wissenschaftliche Erkenntnisse zu Themen wie Digitalisierung, Künstliche Intelligenz, Maschinelles Lernen oder Quantum Machine Learning. Getreu unserem Ansatz der anwendungsorientierten Forschung legen wir dabei besonderen Wert auf Anwendungsmöglichkeiten, Beispiele und Leitfäden für Unternehmen. Unsere Veröffentlichungen stehen alle kostenfrei zur Verfügung, einige erfordern eine kurze Registrierung.

© Fraunhofer IAIS

Veröffentlichungen 2024

»Grundlagen, Chancen und Herausforderungen beim MLOps-Einsatz in Unternehmen«

Studie 2024

© monsitj – stock.adobe.com / KI.NRW

Was ist MLOps? Und wie wird es von Unternehmen genutzt? In einer Studie haben Experten von KI.NRW und dem MLOps-Team des Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS insgesamt 29 Unternehmen interviewt, um zu verstehen, wo sie bei ihrer MLOps-Reise stehen.

Herausgekommen ist ein kompakter Überblick über Grundlagen, Chancen und Herausforderungen des MLOps-Einsatzes, der neben einer detaillierten Bestandsaufnahme auch wertvolle Handlungsempfehlungen für Unternehmen bereithält.

Bei MLOps handelt es sich um ein Paradigma für die Entwicklung und den Betrieb von Machine-Learning-Anwendungen (ML). Dabei geht es sowohl um technische als auch um organisatorische Aspekte, beispielsweise darum, welche Infrastruktur, welche Prozesse, Kompetenzen im Team und welche Tools im Unternehmen für den produktiven Einsatz von ML benötigt werden.

 

Download PDF

»Superkraft Sprachmodell? Wie generative KI einen Beitrag leisten kann, die Leistungsfähigkeit in der Verwaltung zu steigern«

© Deloitte

Die deutsche Verwaltungslandschaft steht angesichts der notwendigen Digitalisierung und Automatisierung von bisher manuellen Prozessen vor einer grundlegenden Transformation. Der Anstieg an Anträgen für Wohngeld, BAföG oder Einbürgerungsverfahren setzt Behörden zusätzlich unter Druck. Der entstehende Rückstau trägt zu einem sinkenden Vertrauen in die Leistungsfähigkeit der öffentlichen Verwaltung bei. Gleichzeitig muss sie die rückläufigen Mitarbeitendenzahlen infolge des demografischen Wandels kompensieren. Generative Künstliche Intelligenz (GenAI) und insbesondere große Sprachmodelle (Large Language Models, LLMs) spielen hier eine wichtige Rolle, um die Mitarbeitenden zukünftig in ihren Aufgaben zu unterstützen, zu entlasten und hierdurch Freiräume zu schaffen, um sich verstärkt der direkten Interaktion mit Bürgerinnen und Bürgern zu widmen. In diesem Briefing präsentieren Fraunhofer IAIS und Deloitte drei Anwendungsbeispiele großer Sprachmodelle, von welchen die öffentliche Verwaltung schon heute profitieren kann. Bei der Betrachtung zu etablierender Rahmenbedingungen muss zwischen den behördeninternen Voraussetzungen und der staatlichen Infrastruktur unterschieden werden. Diese Publikation betrachtet die Voraussetzungen auf individueller Ebene der Behörden.
 

Download PDF

»Wie Agenten und Foundation-Modelle bei der Versorgung Schwerverletzter helfen«

Künstliche Intelligenz im Schockraum

Hochkomplexe Prozesse durchführen, zeitkritische Fälle behandeln und gleichzeitig umfangreiche Informationsmengen verwalten – all dies stellt eine erhebliche Belastung für das Krankenhauspersonal dar. Künstliche Intelligenz (KI) kann hier für Entlastung sorgen. Welche Möglichkeiten sich durch die KI-Prototypen »TraumAgent« und »FormAssistant« für den medizinischen Bereich ergeben, wird im Whitepaper »Künstliche Intelligenz im Schockraum: Wie Agenten und Foundation-Modelle bei der Versorgung Schwerverletzter helfen« erläutert. Entwickelt wurden beide Anwendungen im Zuge des Projekts »TraumAInterfaces«. In diesem widmen sich Wissenschaftler*innen des Fraunhofer-Instituts für Intelligente Analyse- und Informationssysteme IAIS in Zusammenarbeit mit den Projektpartnern der Universität Witten/Herdecke, dem Universitätsklinikum Aachen sowie dem Klinikum Köln-Merheim der Frage, wie Foundation Models und Large Language Models (LLMs) bei der Versorgung Schwerverletzter im Schockraum bestmöglich helfen und den Informationsaustausch optimieren können.
 

Download bei Registrierung

»Vertrauenswürdige KI-Anwendungen mit Foundation-Modellen entwickeln«

Ein systematischer Zugang zur Prüfung von KI-Anwendungen, die mit Foundation-Modellen realisiert werden

© Alex - stock.adobe.com / Fraunhofer IAIS

Foundation-Modelle haben ein großes Potenzial für Wirtschaft und Gesellschaft – aber wie können KI-Anwendungen damit nicht nur innovativ, sondern auch sicher und vertrauenswürdig gestaltet werden? Diese Frage treibt gerade viele Expertinnen und Experten in Politik, Forschung und Unternehmen um. Das neue Whitepaper »Vertrauenswürdige KI-Anwendungen mit Foundation-Modellen entwickeln« gibt hierauf Antworten und erläutert, wie sich spezielle Risiken der Foundation-Modelle auf die KI-Anwendung auswirken können und stellt eine risikobasierte Systematik vor, mit der die Vertrauenswürdigkeit solcher KI-Anwendungen bewertet und sichergestellt werden kann.

Die weltweit erste, umfassende Regulierung von Künstlicher Intelligenz ist die europäische KI-Verordnung (AI Act), die zum Zeitpunkt der Veröffentlichung des Whitepapers kurz vor der formellen Verabschiedung steht und eine KI-Konformitätsbewertung von Hochrisikosystemen fordert. Vor diesem Hintergrund zeigt das Whitepaper auf, wie die Vertrauenswürdigkeit einer mit Foundation-Modellen entwickelten KI-Anwendung bewertet und sichergestellt werden kann. Dafür wird die Vorgehensweise, wie sie im »KI-Prüfkatalog zur Gestaltung vertrauenswürdiger Künstlicher Intelligenz« des Fraunhofer IAIS entwickelt worden ist, in den Kontext von Foundation-Modellen übertragen. Dabei wird besonders berücksichtigt, dass sich spezielle Risiken der Foundation-Modelle auf die KI-Anwendung auswirken können und zusätzlich bei der Prüfung der Vertrauenswürdigkeit beachtet werden müssen.

Erschienen ist die Publikation im Rahmen des KI.NRW Flagship-Projekts Zertifizierte KI.

Download PDF (Deutsch)   Download PDF (Englisch)

AI and Ethics: »AITA: AI trustworthiness assessment«

Methoden zur Zertifizierung von Künstlicher Intelligenz

Die Anwendungsmöglichkeiten von Künstlicher Intelligenz sind vielfältig. Fortschreitend übernehmen KI-Systeme komplexe Arbeitsabläufe und treffen autonome Entscheidungen. Folglich sind hohe Qualitäts- und Sicherheitsanforderungen sowie strenge Ethikrichtlinien notwendig, um die Zuverlässigkeit der KI-Technologien zu garantieren. Hierzu entwickelt das KI.NRW Flagship-Projekt »Zertifizierte KI« unter Leitung von Dr. Maximilian Poretschkin, Leiter KI-Absicherung und Zertifizierung am Fraunhofer IAIS, einen Ansatz zur Bewertung der Vertrauenswürdigkeit von Künstlicher Intelligenz unter Betrachtung von KI-Prüfkriterien und Qualitätsanforderungen.

Im Rahmen des AAAI Spring Symposiums 2023 ist die Springer Publikation »AI and Ethics« erschienen. In dem Kapitel »AITA: AI trustworthiness assessment« beschreiben Poretschkin et al. Möglichkeiten zur Zertifizierung von KI-Systemen, darunter Methoden zur Operationalisierung ethischer Werte oder zur Bewertung von KI-Prozessen. Zukünftig soll so die Interaktion zwischen Menschen und KünstIicher Intelligenz optimiert und kontrolliert werden.

Download PDF

Veröffentlichungen 2023

»KI-Engineering in der Produktion«

Whitepaper beschreibt Methodik für verlässliche, langfristig nutzbare KI-Anwendungen

© Fraunhofer

Künstliche Intelligenz verspricht, Optimierungsprobleme datengetrieben zu lösen, die mit anderen Methoden schwer greifbar sind – auch im Bereich der industriellen Fertigung und Logistik. Allerdings stehen Ingenieure dabei vor der Herausforderung, dass beim Entwurf industrieller Anlagen und Prozesse eine vorhersagbare und dauerhaft verlässliche Leistungsfähigkeit erwartet wird. Diese Rahmenbedingungen sind bei der Entwicklung und im Betrieb KI-basierter Systeme mitzudenken und zu implementieren.  

Einen Lösungsansatz hierfür liefert die neue Disziplin des KI-Engineering. Ihr Gegenstand ist eine ingenieurmäßige und systematische Herangehensweise an die Nutzung von KI-Verfahren als Teil eines ganzheitlichen Systems-Engineering-Prozesses. Wie sich KI-Engineering in der Produktion nutzbringend einsetzen lässt, schildert das neue, gleichnamige Whitepaper der Fraunhofer-Institute für Intelligente Analyse- und Informationssysteme IAIS sowie für Optronik, Systemtechnik und Bildauswertung IOSB. »Bei unseren Projekten mit der Industrie wird immer wieder deutlich, dass KI als Technologie alleine die Probleme nicht löst.” betonen die beiden Herausgeber Dr.-Ing. Thomas Usländer vom Fraunhofer IOSB und Daniel Schulz vom Fraunhofer IAIS. Es bedarf die Systematik und Methodik des KI-Engineerings dahinter, um einen nachhaltigen geschäftlichen Nutzen dieser innovativen Technologie sicherzustellen.«

 

Download PDF

»KI-Anwendungen systematisch prüfen und absichern«

Prüfwerkzeuge und Prüfplattform zur Gestaltung vertrauenswürdiger Künstlicher Intelligenz

© Alex - stock.adobe.com / Fraunhofer IAIS

Als Schlüsseltechnologie der Zukunft birgt Künstliche Intelligenz (KI) enormes Innovationspotenzial für Wirtschaft und Gesellschaft. Eine umfassende Prüfung solcher KI-Systeme in Bezug auf Risiken wie mangelnde Zuverlässigkeit, Fairness oder Transparenz ist die Basis und Voraussetzung für ihren sicheren Einsatz und die gesellschaftliche Akzeptanz. Gleichzeitig formulieren Regulierungen wie der AI Act zusätzliche, rechtliche Anforderungen. Aufgrund der Komplexität und Datenabhängigkeit leistungsstarker KI-Systeme benötigt man für ihre technische Prüfung spezielle Software-Werkzeuge und Testverfahren, die weit über klassische Ansätze hinausgehen. Es ist zudem wichtig, dass Prüfungen von KI-Modellen standardisiert durchgeführt werden können. Die Tests müssen wiederholbar sein und dürfen nicht der Varianz von Modellen unterliegen, um eine Vergleichbarkeit sicherzustellen. Die Herausforderung ist dabei, dass die Anwendungsbereiche und damit die Anforderungen an marktfähige Prüfwerkzeuge unterschiedlich sind. Beispielsweise benötigt man für die Prüfung einer KI-Anwendung in der Medizin andere Prüfwerkzeuge als für den Qualitätscheck einer KI-Lösung im autonomen Fahrzeug.

Daher müssen verschiedene, KI-spezifische Prüfwerkzeuge entwickelt werden, die KI-Systeme auf Risiken systematisch testen und somit Entwickler*innen sowie Prüfer*innen bei der Validierung der Systeme unterstützen. Um KI-Tests einfach, nachvollziehbar und reproduzierbar durchzuführen, müssen die Prüfwerkzeuge in ein gemeinsames Software-Framework integriert werden. Dieses Whitepaper stellt ein Prüf-Framework vor, das diese Herausforderungen bewältigt und als Plattform zur Integration von KI-Prüfwerkzeugen dient. Außerdem werden ausgewählte KI-Prüfwerkzeuge, die für unterschiedliche Anwendungsbereiche genutzt werden können, sowie ihre Funktionalitäten im Detail erklärt.
 

Download PDF

»Natural Language Processing in der Medizin«

Von der automatisierten Befundanalyse bis zum Arztbriefgenerator: Künstliche Intelligenz für dokumentenbasierte Prozesse im Krankenhaus

© thicha - stock.adobe.com

Insbesondere im Krankenhaus kann KI dabei helfen, Mitarbeitende zu entlasten, Behandlungsergebnisse zu verbessern und Kosten einzusparen. KI-Anwendungen sind mittlerweile dazu fähig, radiologische Bildgebungen auszuwerten, Therapieentscheidungen zu unterstützen und Sprachdiktate zu transkribieren. Die Textverarbeitung wurde dabei in jüngster Zeit insbesondere durch Algorithmen des Natural Language Processing (NLP) revolutioniert, die auf einer KI basieren, die sich mit natürlicher Sprache beschäftigt. Gemeint ist damit das Lesen, Verstehen und Schreiben von Texten wie beispielsweise medizinischer Befunde, Dokumentationen oder Leitlinien.

In unserem Whitepaper »Natural Language Processing in der Medizin« möchten wir die Potenziale Künstlicher Intelligenz für die medizinische Datenverarbeitung aufzeigen und gleichzeitig konkrete Handlungsempfehlungen für Entscheider*innen geben. Dafür beschreiben wir praktische Anwendungsszenarien entlang der Wertschöpfungskette von Krankenhäusern und weisen auf Herausforderungen und Chancen bei der Umsetzung hin.

 

Download bei Registrierung

»Künstliche Intelligenz im Handwerk«

KI-Potenziale mit der Methodik des AI.Shadowings identifizieren

© TechSolution – stock.adobe.com / Fraunhofer IAIS

Von der mittelständischen Bäckerei, über Maschinenbauunternehmen und Werkzeughersteller bis hin zur Handwerkskammer: Es besteht ein großes Potenzial für den Einsatz von Künstlicher Intelligenz (KI) in nordrhein-westfälischen Handwerksbetrieben. Das ist eines der Kernergebnisse aus unserer neuen Studie »Künstliche Intelligenz im Handwerk – KI-Potenziale mit der Methodik des AI.Shadowings identifizieren«. Dafür haben KI-Expert*innen von KI.NRW und des Fraunhofer IAIS in mehreren Betrieben aus unterschiedlichen Gewerbegruppen sogenannte AI.Shadowings durchgeführt. Darin zeigte sich, dass die identifizierten Beispielanwendungen (Use Cases) für den Einsatz von KI sehr vielfältig sind: Sie umfassen unter anderem die automatisierte Dokumentenverarbeitung, visuelle Qualitätskontrollen und bedarfsorientierte Absatzprognosen.

Download PDF

AI Assessment Catalog (KI-Prüfkatalog)

Guideline for Designing Trustworthy Artificial Intelligence

© Alex – stock.adobe.com/Fraunhofer IAIS

Um hochwertige KI-Produkte und -Dienstleistungen zu entwickeln, ist es für Unternehmen und Entwickler*innen unerlässlich, die Vertrauenswürdigkeit eines KI-Systems sicherzustellen und nachzuweisen: Entweder von Entwicklungsstart an (by design) oder durch objektive Prüfungen im Laufe des Anwendungsbetriebs. So erfüllen KI-Anwendungen nicht nur entsprechende Richtlinien und schaffen Vertrauen und Akzeptanz, sondern können auch einen wertvollen Beitrag zur Markenbildung leisten und somit Wettbewerbsvorteile schaffen.

Um Risiken einzugrenzen und ein grundlegendes Vertrauen der Gesellschaft in die Künstliche Intelligenz zu sichern, haben die EU-Kommission, die High Level Expert Group on AI (HLEG) und die Datenethikkommission der Bundesregierung allgemeine Leitlinien für die Entwicklung von KI-Anwendungen geschaffen. Diese sind jedoch oftmals zu abstrakt und enthalten kaum konkrete Anforderungen an Unternehmen und Entwickler*innen. Zudem zeigt die kürzlich veröffentlichte Normungsroadmap KI überdeutlich einen großen Bedarf an konkreten Qualitätsvorschriften und Standards für KI-Anwendungen auf.

Der KI-Prüfkatalog des Fraunhofer IAIS setzt genau daran an und bietet einen strukturierten Leitfaden, mithilfe dessen abstrakte Qualitätsmaßstäbe zu anwendungsspezifischen Prüfkriterien konkretisiert werden können.

2023 wurde der deutsche KI-Prüfkatalog ins Englische übersetzt.

Mehr Informationen

 

Download PDF (englisch)    Download PDF (deutsch)

Große KI-Modelle für Deutschland

© KI Bundesverband

Als Reaktion auf den rasanten Fortschritt in der Entwicklung großer KI-Modelle in den USA und China, setzt sich die vom KI Bundesverband gegründete LEAM-Initiative (Large European AI Models) für die Entwicklung eines europäischen Modells ein. Voraussetzung dafür ist der Aufbau einer dedizierten KI-Supercomputing-Infrastruktur.

In dieser vom Bundesministerium für Wirtschaft und Klimaschutz BMWK in Auftrag gegebenen Machbarkeitsstudie wird ein erstes Konzept für den Aufbau und Betrieb eines solches Rechenzentrums skizziert. Insgesamt 40 Vertreter*innen aus Wirtschaft, Wissenschaft und Gesellschaft – darunter auch unsere IAIS-Wissenschaftler Dr.-Ing. Joachim Köhler, Abteilungsleiter NetMedia, Dr. Nicolas Flores-Herr, Leiter Conversational AI am Institutsstandort Dresden, Dr. Gerhard Paaß, Senior Data Scientist, Laszlo Friedmann, wissenschaftlicher Mitarbeiter, sowie Dr. Christian Temath, Geschäftsführer der Kompetenzplattform KI.NRW – haben ihr Wissen in dieser Studie gebündelt.

 

Download PDF

Veröffentlichungen 2022

Bereit für das Smart Hospital?

© Elenabsl - stock.adobe.com

Innerhalb des Projekts SmartHospital.NRW entwickeln das Fraunhofer IAIS und weitere Konsortialpartner verschiedene Werkzeuge, um Krankenhäuser bei der digitalen Transformation und dem Einsatz von KI zu unterstützen.

Mit dem KI-Readiness-Check können Sie den Status Quo Ihres Krankenhauses bezüglich seines KI-Reifegrades ermitteln und Empfehlungen zur Weiterentwicklung erhalten. Der Smart Hospital-Check bietet die Möglichkeit zu überprüfen, inwieweit die strategische Ausrichtung eines Krankenhauses den Standards eines Smart Hospitals entspricht. Das Vorgehensmodell hilft bei der detaillierten Planung einer individuellen Vorgehensweise zur Transformationen zum Smart Hospital. Es integriert neben dem KI-Readiness-Check und Smart Hospital-Check weitere praxisnahen Empfehlungen in einem Offline-Selbsttest. Hierzu gehören ein Maßnahmenkatalog, ein Katalog zu Qualifizierungsmaßnahmen sowie ein Katalog mit Use Cases.

Alle Werkzeuge können hier heruntergeladen werden.

Das Whitepaper erläutert Ziele, Aufbau, Prinzipien und Funktionsweise des KI-Readiness-Checks. Außerdem wird die Bedeutung von Digitalisierung und KI für Krankenhäuser herausgestellt und ein Ausblick auf die weiteren Arbeiten von SmartHospital.NRW gegeben.

 

Download PDF

KI-gestütztes Design of Experiments in Forschung und Entwicklung

© R. Gino Santa Maria - stock.adobe.com

In unserem Whitepaper erklären wir, wie Sie mit Künstlicher Intelligenz und Expertenwissen effizientere Versuchspläne erstellen und so Ihre Produktentwicklung schneller und kostengünstiger gestalten.

Design of Experiments (DoE) ist eine Kernkompetenz von Forschungs- und Entwicklungsabteilungen und zugleich ein Anwendungsfeld, das stark von den rasanten Fortschritten in den Bereichen des Maschinellen Lernens und der Künstlichen Intelligenz profitiert. Die von uns vorgestellten und bereits in vielen Projekten erfolgreich eingesetzten KI-basierten DoE-Verfahren nutzen eine Kombination aus fixed-size und sequenziellen Versuchsplänen. Dieses Vorgehen bietet eine hohe Flexibilität bei der Versuchsplanung, der Berücksichtigung von Einflussfaktoren und der Einbindung von ML-Verfahren wie Bayesscher Optimierung und Active Learning. So können Sie in Ihrem Unternehmen vorhandenes Expertenwissen optimal mit den Möglichkeiten der datengetriebenen Modellierung verbinden. Mithilfe der im Whitepaper dargestellten Methoden sind herausfordernde Aufgaben, wie die Optimierung von Produkteigenschaften oder der gezielte Aufbau einer zukunftssicheren Datenbasis, effizient lösbar.
 

Download bei Registrierung

Die Zukunft der öffentlichen Verwaltung datenbasiert gestalten

Whitepaper

© Deloitte

Deloitte und das Fraunhofer IAIS haben gemeinsam Interviews mit führenden Expert*innen der Künstlichen Intelligenz (KI) geführt, um den Status quo der datenbasierten Verwaltung zu analysieren und Maßnahmen zur Verbesserung aufzuzeigen. In diesem Whitepaper zeigen wir auf, wie die Transformation zur datengetriebenen Verwaltung gelingen kann.

 

Download PDF

Veröffentlichungen 2021

Management System Support for Trustworthy AI

Studie

© Alex - stock.adobe.com / Fraunhofer IAIS

Datenschutz-, Risiko- oder Compliance-Management: Neue KI-Technologien stellen Unternehmen und Entwickler*innen vor neue Herausforderungen. Damit sie diese systematisch und strukturiert angehen können, arbeiten verschiedene Institutionen an Leitlinien und Standards zum Management von Künstlicher Intelligenz (KI). Das Fraunhofer IAIS hat in der Studie »Management System Support for Trustworthy Artificial Intelligence« den Standard-Entwurf für KI-Managementsysteme der International Organization for Standardization (ISO) und die bisherigen Richtlinien miteinander verglichen. Die von Microsoft beauftragte Studie zeigt, inwieweit KI-Managementsysteme Unternehmen beim vertrauenswürdigen Einsatz von KI-Systemen unterstützen und gleichzeitig das Vertrauen in KI-Anwendungen stärken können.

Die Studie wurde auf Englisch veröffentlicht.

 

Download PDF (English)

Moderne Sprachtechnologien

Studie

© Fraunhofer IAIS

Was bedeutet Natural Language Processing, was verbirgt sich hinter GPT-3 und wie funktionieren eigentlich Chatbots? Antworten auf diese Fragen liefert die neue Studie »Moderne Sprachtechnologien – Konzepte, Anwendungen, Chancen« von KI.NRW. In einer umfassenden Einführung zeigen Wissenschaftler*innen des Fraunhofer-Instituts für Intelligente Analyse- und Informationssysteme IAIS und Mitarbeitende der nordrhein-westfälischen KI-Kompetenzplattform, wo intelligente Sprachsysteme schon heute zum Einsatz kommen, wie diese genau funktionieren und welche wirtschaftlichen Chancen damit verbunden sind. Die Studie richtet sich an Unternehmen, die das Potenzial dieser Technologien für sich erschließen wollen, sowie an alle, die einen kompakten Einstieg in die Materie der Sprachtechnologien suchen.

 

Download bei Registrierung

Effiziente Betrugserkennung: Neue Potenziale mit »Informed Machine Learning« und »Explainable ArtificaI Intelligence« erschließen

Whitepaper

© samrit - stock.adobe.com / Thitichaya - stock.adobe.com / Fraunhofer IAIS

In der intelligenten Betrugserkennung werden Methoden der Künstlichen Intelligenz, wie z. B. Maschinelles Lernen, bereits gewinnbringend eingesetzt. Fehlende Transparenz und mangelnde Genauigkeit schränkten die Anwendbarkeit bisher jedoch gelegentlich ein.

Das Whitepaper »Effiziente Betrugserkennung durch Maschinelles Lernen: Neue Potenziale mit »Informed Machine Learning« und »Explainable ArtificaI Intelligence« erschließen« zeigt die neuesten Entwicklungen im Maschinellen Lernen für die datengetriebene Betrugserkennung auf: Das vom Fraunhofer IAIS geprägte »Informed Machine Learning« und die internationale Forschung an »Explainable Artificial Intelligence« ermöglichen es, fachliches Expertenwissen einzubinden und Transparenz zu schaffen. Dadurch kann die Effizienz der Betrugserkennung deutlich gesteigert werden.

 

Download PDF

KI-Prüfkatalog

Leitfaden zur Gestaltung vertrauenswürdiger Künstlicher Intelligenz

© Alex - stock.adobe.com / Fraunhofer IAIS

Um hochwertige KI-Produkte und -Dienstleistungen zu entwickeln, ist es für Unternehmen und Entwickler*innen unerlässlich, die Vertrauenswürdigkeit eines KI-Systems sicherzustellen und nachzuweisen: Entweder von Entwicklungsstart an (by design) oder durch objektive Prüfungen im Laufe des Anwendungsbetriebs. So erfüllen KI-Anwendungen nicht nur entsprechende Richtlinien und schaffen Vertrauen und Akzeptanz, sondern können auch einen wertvollen Beitrag zur Markenbildung leisten und somit Wettbewerbsvorteile schaffen.

Um Risiken einzugrenzen und ein grundlegendes Vertrauen der Gesellschaft in die Künstliche Intelligenz zu sichern, haben die EU-Kommission, die High Level Expert Group on AI (HLEG) und die Datenethikkommission der Bundesregierung allgemeine Leitlinien für die Entwicklung von KI-Anwendungen geschaffen. Diese sind jedoch oftmals zu abstrakt und enthalten kaum konkrete Anforderungen an Unternehmen und Entwickler*innen. Zudem zeigt die kürzlich veröffentlichte Normungsroadmap KI überdeutlich einen großen Bedarf an konkreten Qualitätsvorschriften und Standards für KI-Anwendungen auf.

Der KI-Prüfkatalog des Fraunhofer IAIS setzt genau daran an und bietet einen strukturierten Leitfaden, mithilfe dessen abstrakte Qualitätsmaßstäbe zu anwendungsspezifischen Prüfkriterien konkretisiert werden können.

Mehr Informationen

 

Download PDF (deutsch)   Download PDF (englisch)

»KI-basierte Root-Cause-Analyse«

Whitepaper

© Maha Heang - stock.adobe.com / topor - stock.adobe.com / Fraunhofer IAIS

Produktqualität und Stillstandzeiten haben in komplexen und hochoptimierten Produktionsprozessen viele, meist nicht klar diagnostizierbare Ursachen. Die Erkennung von bislang unbekannten Wirkzusammenhängen, sogenannten »Root Causes«, ist ein Schlüsselfaktor für die zukünftige Optimierung von Produktionsprozessen.

Das Whitepaper »KI-basierte Root-Cause-Analyse: Verstehen und Optimieren von Produktionsprozessen« stellt die vom Fraunhofer IAIS entwickelte KI-basierte Root-Cause-Analyse und ihre Vorteile vor. Ziel ist es, Fehlern in der industriellen Produktion mithilfe von Künstlicher Intelligenz auf den Grund zu gehen und Optimierungspotenziale zu erkennen und zu nutzen. Das Whitepaper analysiert zudem die Rolle von Anwendungs-Expert*innen in Zusammenarbeit mit Data Scientists und schlägt Arbeitsabläufe vor.

 

Download Bei Registrierung

Veröffentlichungen 2020

»Zukunftssichere Lösungen für Maschinelles Lernen«

Whitepaper

© Alisa - stock.adobe.com / Fraunhofer IAIS

In einigen Unternehmen ist Machine Learning heute schon im Einsatz und trägt zur Wertschöpfung bei. So existieren ML-Lösungen, die zu einer ressourceneffizienteren Produktion beitragen, die Logistikplanung erleichtern oder in Vertrieb und Marketing dabei helfen, Kundenwünsche besser zu verstehen. In anderen Unternehmen sind ML-Lösungen vor allem noch Gegenstand von Forschung und Entwicklung.

Der Übergang aus dem forschungsorientierten Nischendasein in das strukturierte Tagesgeschäft eines Unternehmens bedarf auf ML zugeschnittene, technische und organisatorische Konzepte. In diesem Whitepaper möchten wir dazu Orientierungshilfen geben: Diese richten sich sowohl an das Management und Unternehmensstrategen als auch an Fachleute, die für IT-Lösungen und digitale Infrastruktur zuständig sind.

 

Download bei Registrierung

»Künstliche Intelligenz im Krankenhaus«

Whitepaper

© rancz - stock.adobe.com / Gorodenkoff - stock.adobe.com / Fraunhofer IAIS

Gerade in Zeiten einer globalen Pandemie kann die Digitalisierung und Verschlankung von Prozessen im Gesundheitswesen dabei unterstützen, wertvolle Ressourcen zu sparen und Überlastungen abzufedern – beispielsweise durch den Einsatz von telemedizinischen Anwendungen wie digitalen Sprechstunden und intelligenter Operations-Planung. Durch die von der Bundesregierung aufgrund der aktuellen Corona-Pandemie angestrebte Stärkung des Gesundheitswesens, sowie einer gestiegenen Förderung moderner Notfallkapazitäten und einer besseren digitalen Infrastruktur, ergeben sich völlig neue Potenziale – aber auch Herausforderungen – für den Einsatz von Künstlicher Intelligenz.

Für das vorliegende Whitepaper haben wir einen konkreten Anwendungsfall, die Notfallversorgung im Krankenhaus, im Detail untersucht und beschrieben. Dabei untersuchen wir, wie Methoden der Sprachtechnologie, Textanalyse und des Maschinellen Lernens das Personal bei der Notfallversorgung in Kliniken unterstützen können.  

 

Download bei Registrierung

»Quantum Machine Learning«

Studie

© Fraunhofer IAIS

In unserer Studie »Quantum Machine Learning« geben wir einen Einblick in das Quantencomputing, erklären, welche physikalischen Effekte eine Rolle spielen und wie diese dazu genutzt werden, Verfahren des Maschinellen Lernens zu beschleunigen. Neben den logischen Komponenten werden auch Techniken für die Implementierung der Hardware von Quantencomputern vorgestellt. Die Studie gibt außerdem einen Überblick über die aktuelle Forschungs- und Kompetenzlandschaft und ordnet die Position Deutschlands im internationalen Wettbewerb ein. Zudem stellt die Studie konkrete Anwendungsbereiche und Marktpotenziale für verschiedene Branchen vor.

Denn in den kommenden Jahren werden Unternehmen aus unterschiedlichen Branchen vor der Herausforderung stehen, neue Markt- und Geschäftspotenziale mithilfe des Quantencomputings zu erarbeiten, um ihre Wertschöpfung zu steigern. Mit dieser Studie möchten wir Akteuren aus Wirtschaft, Wissenschaft und Gesellschaft Orientierung bieten und die Potenziale aufzeigen, die schon heute sichtbar sind und in Zukunft in Unternehmen Einsatz finden werden.

 

Download bei Registrierung

»Künstliche Intelligenz in ERP-Systemen«

Studie

© andranik123 - stock.adobe.com / Fraunhofer IAIS

Seit einigen Jahren finden Anwendungen aus dem Bereich der Künstlichen Intelligenz (KI) zunehmend Einzug in ERP-Systeme und bieten neuartige Nutzungsmöglichkeiten.

Diese Studie untersucht die Fragen:

  • Wie wird Künstliche Intelligenz aktuell in ERP-Systemen genutzt?
  • Wie können bestehende Hindernisse für den KI-Einsatz überwunden werden?
  • Welche Chancen, Risiken und Wünsche verbinden Unternehmen mit dem KI-Einsatz?
     

Download bei Registrierung

»Wie eine ERP-Einführung gelingt«

Studie

© bankrx - stock.adobe.com

ERP-Systeme sind die Herzstücke einer modernen Unternehmens-IT. Ihre Neueinführung ist häufig eine große Herausforderung und bedarf sorgfältiger Planung.

Diese Studie untersucht die Fragen:

  • Welche Treiber führen zu einer ERP-Einführung bzw. einem Wechsel?
  • Welchen Einfluss hat die Unternehmensgröße auf die ERP-Systemauswahl?
  • Welche Faktoren beeinflussen den Erfolg einer ERP-Einführung?
     

Download bei Registrierung

»Intelligente Parkplatzsuche mit Machine Learning«

Whitepaper

© antpkr - stock.adobe.com

Die Suche nach einem Parkplatz kostet Zeit und ist zudem eine nicht zu unterschätzende Belastung für die Umwelt. In Kooperation mit dem Unternehmen TomTom wurde in dem vom Bundesministerium für Wirtschaft und Energie (BMWi) geförderten Forschungsprojekt GEISER ein Prototyp für einen intelligenten Parkplatz-Assistenten entwickelt, der Autofahrende schnell zu einem potentiell freien Parkplatz navigieren soll. Dank Verfahren des maschinellen Lernens lernt der Assistent kontinuierlich hinzu und wird, auch wenn anfangs nur wenige Daten vorliegen, mit der Zeit immer zuverlässiger. Im Optimalfall kann die Parkplatzsuchzeit so erheblich verringert werden.

 

Download PDF

Veröffentlichungen 2019

»Vertrauenswürdiger Einsatz von Künstlicher Intelligenz«

Whitepaper

© mila103 - stock.adobe.com / ryzhi - stock.adobe.com / zapp2photo - stock.adobe.com / Fraunhofer IAIS

Das Team der Universitäten Bonn und Köln sowie des Fraunhofer IAIS stellt seinen interdisziplinären Ansatz in einem Whitepaper für die Zertifizierung von KI-Anwendungen vor und erläutert die Handlungsfelder aus philosophischer, ethischer, rechtlicher und techno­logi­scher Sicht. Die Publikation bildet die Grundlage für die weitere Entwicklung der KI-Zertifizierung.

 

Download PDF (Deutsch)   Download PDF (Englisch)

»Ökosysteme für Daten und Künstliche Intelligenz«

Positionspapier

© zapp2photo - stock.adobe.com / Fraunhofer IAIS

In der »Prioritären Strategischen Initiative (PSI)« bündeln mehrere Fraunhofer-Institute ihre Kompetenzen und forschen zusammen an den Themen Kognitive Systeme, Künstliche Intelligenz und Datensouveränität. Die vorliegende Studie zeigt auf, wie ein Ökosystem für Daten und KI aussehen kann, das eine vertrauensvolle Zusammenarbeit verschiedenster Akteure ermöglicht und die Synergiepotenziale der gemeinsamen Datennutzung ausschöpft. Fraunhofer kann in einem derartigen Ökosystem eine wichtige Rolle übernehmen: als neutraler Moderator und als Motor des Forschungs- und Technologietransfers. Sicher aber auch, um Datennutzung und KI-Einsatz verantwortungsvoll zu gestalten. Denn die Datensouveränität ist nur ein Aspekt eines menschzentrierten und werteorientierten Ansatzes, der im internationalen Wettbewerb zu einem Markenzeichen deutscher und europäischer KI-Lösungen werden soll.

 

Download PDF

Maschinelles Lernen »on the edge«

Whitepaper

© metamorworks - stock.adobe.com / Fraunhofer IAIS

»Learning on the edge« bietet im Vergleich zum Lernen in der Cloud wichtige Vorteile für zahlreiche Anwendungen der Künstlichen Intelligenz – nicht zuletzt durch das datenschutzfreundliche Trainingskonzept und die erheblichen Einsparungen an Kommunikationsaufwand und -kosten. In unserem Whitepaper erklären wir das Prinzip »learning on the edge« am Beispiel des autonomen Fahrens.

Mehr Informationen

 

Download PDF

Veröffentlichungen 2018

Urbane Datenräume – Möglichkeiten von Datenaustausch und Zusammenarbeit im Urbanen Raum

Studie

© Fraunhofer FOKUS

Um sich ein aktuelles Bild vom Datenmanagement in Kommunen zu machen, hat die Forschungsgruppe des Fraunhofer FOKUS, IAIS und IML die Situation in Bonn, Dortmund, Emden und Köln untersucht. Das Team hat dazu mit Vertreter*innen aus Verwaltungen und kommunalen Unternehmen gesprochen: Die vielfältig vorhandenen Daten sind sehr heterogen und oftmals nicht für die externe Nutzung aufbereitet. So sind sie häufig nicht weiterverwendbar und von weiterführenden Prozessen ausgeschlossen. Zudem fehlt meist ein systematischer Überblick und datenbasierte Geschäftsmodelle werden kaum gefördert. Das wollen die befragten kommunalen Entscheidungsträger*innen ändern. Sie gehen davon aus, dass die systematische Nutzung urbaner Daten erheblich zur Verbesserung der Verwaltung und der öffentlichen Angebote, der Arbeits- und Lebensqualität, zu gesteigerten Wachstumschancen und zu mehr Sicherheit und besserer Politikgestaltung führen wird. Für eine verbesserte Nutzung und größere Verfügbarkeit urbaner Daten empfiehlt die Studie den Kommunen einen individuell ausgestalteten urbanen Datenraum, der auf einen gemeinsamen offenen Plattformkern für urbane Datenräume effizient und kostengünstig aufgesetzt werden kann.

 

Download PDF

Maschinelles Lernen: Kompetenzen, Forschung, Anwendung

Studie

© sdecoret – Fotolia / Fraunhofer IAIS

Maschinelles Lernen (ML) ist die Schlüsseltechnologie für kognitive Systeme auf Basis Künstlicher Intelligenz (KI) und damit einer der entscheidenden Faktoren für die globale wirtschaftliche Entwicklung. Grundlegend für eine nachhaltige Positionierung Deutschlands und Europas im internationalen Wettbewerb ist die faktenbasierte Auseinandersetzung mit KI- und ML-basierten Technologien.

Denn es gibt kaum einen Bereich, der nicht von ML- und KI-basierten Technologien entscheidend transformiert wird: von der Güterproduktion über die Logistik bis zur Medizintechnik. Schon die Vielzahl der Einsatzmöglichkeiten ist ein Grund für das öffentliche Interesse. Die Debatte ist jedoch oft von Halbwissen, Vermutungen und Mythen geprägt. Aufklärung ist gefragt, denn die gesellschaftliche Akzeptanz ist für die weitere Verbreitung maschinell basierter Lernverfahren von zentraler Bedeutung.

Hier setzt die im Kontext eines vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts erstellte Studie »Maschinelles Lernen – Kompetenzen, Anwendungen und Forschungsbedarf« an.

Mehr Informationen


Download PDF

Veröffentlichungen 2017

Zukunftsmarkt Künstliche Intelligenz

Potenzialanalyse

© adam121 - stock.adobe.com / zapp2photo - stock.adobe.com / stevanovic igor - Fotolia / valio84sl - iStock / Syda Productions - Fotolia / phongphan5922 - Fotolia

Ziel dieser Analyse ist es, den aktuellen Stand bezüglich der Marktreife und den Einsatzpotenzialen der KI-Technologien auf dem deutschen und internationalen Markt systematisch zu erfassen. Die Darstellung basiert auf der Analyse einschlägiger Marktstudien und Prognosen, den Ergebnissen von Zukunftsworkshops mit Vertretern ausgewählter Anwendungsbranchen (Callcenter, Gesundheitswesen und industrielle Produktion) sowie einer Untersuchung der nationalen und europäischen Projektförderung im Bereich der Künstlichen Intelligenz.

Für die KI-Systeme »Autonome Roboter«, »Autonome Transportmittel«, »Smarte Geräte« und »Kognitive Assistenten« werden bedeutende Marktsegmente und zentrale Akteure aus der Wissenschaft und Wirtschaft identifiziert. Die Anwendungsbeispiele (»Use Cases«) zeigen den Einsatz von KI-Kompetenzen in konkreten Produkten aus den jeweiligen Branchen sowie die laufenden Forschungsaktivitäten anhand ausgewählter Projekte der Fraunhofer-Institute auf.

Mehr Informationen

 

Download PDF

Veröffentlichungen 2016

Marktübersicht In-Memory-Systeme

Studie

© Jürgen Fälchle - Fotolia.com / Fraunhofer IAIS

Durch die digitale Transformation von Unternehmen und Gesellschaft fallen immer größere Datenmengen an, die immer schneller verarbeitet werden müssen. Dazu sind einer­seits Lösungen gefragt, die den Anforderungen von interaktiven oder mobilen Applikationen gerecht werden und sehr schnell reagieren. Andererseits müssen moderne Systeme große Datenmengen schnell und explorativ analysieren und wichtige Informationen extrahieren können. »In-Memory«-Systeme unterstützen diese Anforderungen durch besonders kurze Datenzugriffszeiten. Durch die konsequente und intelligente Nutzung des Arbeitsspeichers als Datenspeicher können neuartige Anwendungen mit einer besonders hohen Verarbeitungsgeschwindigkeit realisiert werden. Die Studie zeigt, dass der Trend zu In-Memory-Systemen weder eine kurzfristige noch eine nur vorrübergehende Erscheinung ist. Vielmehr ist ihr Einsatz durch den stetig fallenden Preis schneller Speichertechnologien möglich geworden. Viele Hersteller von Datenbanklösungen und Analysesoftware haben darauf reagiert und ihre Produkte um In-Memory-Funktionalitäten erweitert. Die Liste der am Markt verfügbaren, arbeitsspeicheroptimierten Softwarelösungen ist lang und wächst kontinuierlich.

Die Studie erklärt den Begriff »In-Memory«, erläutert typische Merkmale von In-Memory-Systemen und gibt einen umfangreichen und herstellerneutralen Überblick zum aktuellen Angebot kommerzieller und Open-Source-Produkte.

 

Download bei Registrierung

Veröffentlichungen 2012

Big Data – Perspektiven für Deutschland

© Fraunhofer IAIS

Im Kontext des THESEUS-Programms haben wir eine vom Bundesministerium für Wirtschaft und Technologie (BMWi) geförderte Analyse zu Nutzung und Potenzial für Big Data in deutschen Unternehmen durchgeführt. Ziel war es, Handlungsoptionen für Wirtschaft, Politik und Forschung aufzuzeigen und in individuellen Roadmaps die Anforderungen verschiedener Branchen an Big-Data-Lösungen und künftige Anwendungsfelder zu identifizieren.

Das Projekt umfasste drei Säulen:

  1. eine internationale Recherche zum Umgang mit Big Data, zu Forschungsaktivitäten und konkreten Anwendungen
  2. eine Onlinebefragung unter Unternehmen
  3. Workshops mit Vertretern unterschiedlicher Branchen

Damit sich Unternehmen aktiv mit Big-Data-Analytics-Lösungen vertraut machen können, haben wir am Fraunhofer IAIS außerdem das »Living Lab Big Data« entwickelt. Mit Hilfe dieser Experimentierplattform können vor allem KMU über Schulungen in kurzer Zeit Know-how zum Thema Big Data aufbauen.

Mehr Informationen

 

Download PDF