

Bachelor’s thesis Media Technology

Dwelling Detection on VHR satellite
imagery of Refugee/ IDP camps using
Faster R-CNN

presented by

Lorenz Wickert

Name 1st examiner: Prof. Dr. Arnulph Fuhrmann (Technische Hochschule Köln)

Name 2nd examiner: Dipl.-Inform. Manfred Bogen, Ph. D. (Fraunhofer IAIS, Sankt Augustin)

September 2019

II

Bachelor Thesis

Title: Dwelling Detection on VHR satellite imagery of Refugee/ IDP Camps using Faster
R-CNN
Reviewers:

− Prof. Dr. Arnulph Fuhrmann

− Dipl.-Inform. Manfred Bogen, Ph.D.

Abstract: This Bachelor Thesis describes a new method for dwelling detection on Very
High Resolution (VHR)-Satellite imagery using Faster-RCNN developed for the BMBF-
project HUMAN+1. HUMAN+ aims to develop a real-time situational awareness applica-
tion for efficient migration management to guarantee humanitarian security. The described
method and a corresponding workflow are used in a remote sensing module in the input
layer of the HUMAN+ application. It analyses VHR-satellite images of refugee camps,
finds all dwellings on the image and calculates an estimate of the number of tents (i.e.
dwellings) and people in the camp. To find the dwellings, a Faster R-CNN is used. R-
CNNs build a special neural network on a regular CNN to use them for object detection.
This thesis describes the generation of training data, the training of a Faster R-CNN and
the utilization of the trained Faster R-CNN in a dwelling detection application.
Keywords: Machine Learning (ML), Faster R-CNN, Remote Sensing (RS), Dwelling De-
tection, Object Detection
Date: September 9, 2019

1https://www.sifo.de/files/Projektumriss_HUMAN-Plus.pdf

III

Acknowledgements

First, I would like to thank Prof. Dr. Arnulph Fuhrmann for this research and develop-
ment opportunity, for agreeing to be the supervisor of this thesis, and for assisting and
supporting me in completing it.

Second, I would like to thank my second supervisor at Fraunhofer IAIS and project man-
ager in the HUMAN+ project, Dr. Manfred Bogen, for his constant assistance, invaluable
expertise, and support during the writing of this thesis.

Special thanks go to all my colleagues at Fraunhofer IAIS ART for their precious ideas
and help. In particular, I want to thank Dr. Marvin Richter for the good cooperation in the
HUMAN+ project, Dr. Stefan Rilling for giving constant motivation while developing the
application, Benjamin Wulff for great support in AI matters and technical issues, and my
office mate Fernando Morillo for discussing my thesis with me and for sharing an office.

Finally I want to thank my family and my friends for their ongoing support up to the com-
pletion of my bachelor thesis and beyond.

Contents IV

Contents

1. Introduction 1
1.1. The HUMAN+ Project . 1

1.1.1. Project Background . 1
1.1.2. The HUMAN+ concept . 2

1.2. The Remote Sensing Module . 3

2. Methodology 5
2.1. Theoretical Background . 5

2.1.1. Geographic Information System . 5
2.1.2. Remote Sensing Data . 6
2.1.3. Deep Learning . 13

2.2. Implementation . 24
2.2.1. Training Data Generation . 25
2.2.2. Faster R-CNN Training . 31
2.2.3. Dwelling Detection Workflow . 33
2.2.4. Implementation Details . 36

2.3. Results . 38
2.3.1. Machine Learning Metrics . 38
2.3.2. Validity of Dwelling Detection . 39

3. Outcome 42
3.1. Discussion . 42
3.2. Conclusion . 44

A. Appendix 46
A.1. Sources for the inhabitants of the found Refugee Camps 46
A.2. Used satellite images . 47

B. Bibliography 55

C. Eidesstattliche Erklärung 60

1. Introduction 1

1. Introduction

1.1. The HUMAN+ Project

This Bachelor Thesis is written in the context of the HUMAN+ project at the Fraunhofer In-
stitute for Intelligent Analysis and Information Systems IAIS1 in the business area Preven-
tive Security2. Fraunhofer IAIS is an institute of the Fraunhofer-Gesellschaft zur Förderung
der angewandten Forschung e.V. Fraunhofer, Europe’s largest application-oriented re-
search organization3. The main focus of Fraunhofer IAIS is processing of big data and
its analysis using artificial intelligence machine learning4.

HUMAN+ is a German-Austrian cooperation project5. The project is funded by the Bun-
desministerium für Bildung und Forschung with the Verein Deutscher Ingenieure (VDI)
as project management on the German side and by the Bundesministerium für Verkehr,
Innovation und Technologie und dem österreichischen Förderungsprogramm für Sicher-
heitsforschung (KIRAS) on the Austrian side. The aim of the project is to ensure humani-
tarian safety through real-time situational awareness for efficient management of migration
movements.

1.1.1. Project Background

In 2015/16, the biggest migration movements to Germany after the Second World War
occurred. The migration movements were mainly caused by the civil war in Syria and
the terror organization IS. While being high throughout the whole year, the number of
refugees arriving in Germany and Austria intensified in September 2015 after the Dublin
Regulation6 was deferred. On September 4-5, 2015, Syrian refugees who were stranded
in Hungary were allowed to come to Germany. At peaks, more than ten thousand refugees
were crossing the Austrian-German border a day.

Due to a short reaction time and the high intensity of the migration movements, the human-
itarian and administrative challenges were high. Refugees had to be registered, forwarded

1https://www.iais.fraunhofer.de/en.html
2https://www.iais.fraunhofer.de/en/business-areas/preventive-security.html
3https://www.fraunhofer.de/en/about-fraunhofer/profile-structure.html
4https://www.iais.fraunhofer.de/en/institute/about-us.html
5https://www.iais.fraunhofer.de/de/geschaeftsfelder/praeventive-sicherheit/praeventive-

sicherheit/referenzprojekte/HUMANPlus.html
6https://ec.europa.eu/home-affairs/what-we-do/policies/asylum/examination-of-applicants_en

1. Introduction 2

and be given supplies and accommodation. Problems were caused by the high number
of people as well as by the lack of quickly available information, making humanitarian and
administrative operations challenging, expensive and cumbersome.

It is almost certain, that the next migration movement will come. Climate change, unstable
political situations, war and poverty make people leave their home to find shelter. In 2018,
the United Nations High Commissioner for Refugees (UNHCR) has reported, that “[. . .]
the worlds forcibly displaced population remained yet again at a record height” (UNHCR,
2018). The HUMAN+ goal is to be better prepared next time.

1.1.2. The HUMAN+ concept

In HUMAN+, different approaches are used to support humanitarian operations when
migration movements are happening. HUMAN+ is going to support decision making by
offering a compact situation report consisting of a real-time map and real-time data, short-
term forecasts and standardized interfaces. Those tools aim to make humanitarian aid
operations better. In particular having data about refugees in a refugee camp near a
border which normally is not available to authorities, municipalities, relief organizations,
NGOs, as well as the police managing a refugee situation, will ease the decision making
in general and the allocation of resources such as medical aid, food, clothes, tents, and
transportation in particular. This data is often hard to get in concrete humanitarian oper-
ations for those participating in these operations: New camps form quickly and data from
the field is often not available.

Therefore new, multisensory data sources are retrieved. HUMAN+ includes data from So-
cial Media, In-Situ optical and thermal images at border stations, remote sensing imagery
and input from operational forces working on the ground. Remote sensing and social
media data is analyzed using machine learning methods. The different data sources
are bundled, processed and shown on a real-time situational awareness map. Further,
the received information will be accessible by software such as Vomatec’s ARGION R©
PLUS7 and CrisCom’s Commander8, - both companies are project partners in the HU-
MAN+ project -, already used in humanitarian aid operations through standardized inter-
faces.

The project is driven by the principle of “User centered Design”. This means, in short, that
the demand carriers and end users of the software are participating in the development
of the HUMAN+ applications from the beginning. Further, due to the politically sensitive
topic of the project, an ethical board is reviewing the development under ethical and legal
aspects.

7https://vomatec-innovations.de/produkte/industrie-privatwirtschaft/produkte/arigon-plus.html
8https://www.criscom.solutions/produkte?lang=en

1. Introduction 3

1.2. The Remote Sensing Module

Fraunhofer IAIS is responsible in the HUMAN+ project for Remote Sensing analysis, data
processing and data supply. This Bachelor thesis describes the development of the Re-
mote Sensing module.

Figure 1.1: The HUMAN+ software architecture. The application described in this thesis is lo-
cated in the module “Fernerkundung” in the “Input-Schicht”.

The aim of the module being a component of the Fernerkundung building block in the
HUMAN+-architecture (Figure 1.1) is described in the “Verbundbeschreibung” of the project
as following:

“[. . .] to fix the frequently occurring information deficit with regard to expected
persons [. . .] and to enable an improved planning of required resources.
[Therefore], data of multisensory terrestrial and airborne sensors are ana-
lyzed to deliver qualified contributions to a real time situational awareness map
based on terrestrial and airborne sensors as well as derived forecasts to form
a basis for current deployment and resource planning9”

The first step in developing the module was to translate this request into an idea, how
satellite imagery could be used to detect migration movements. The fundamental problem
is that humans are not visible on satellite imagery. This is caused on the one hand by a
spatial resolution of satellite imagery which is too low to detect people or the other way
around: the satellites are too far away from the earth’s surface. The best commercially
available satellites offer a spatial resolution up to 30cm per pixel. On the other hand,
satellite imagery has a fluctuating image quality. So even if the best satellites could detect
humans, it is not said that those images are available. Weather conditions do also play
a role in the domain. It is therefore not possible to just count people who walk on the

9Translated from German

1. Introduction 4

ground. Concerning the methodology we observed machine learning’s huge success
in image recognition and computer vision (LeCun et al., 2015). Therefore our working
hypothesis is that machine learning should be usable to analyze satellite imagery too.
This bachelor thesis is about proving this.

After getting to know the state-of-the-art in machine learning on satellite data by read-
ing systematic reviews on the issue (Cao et al., 2017; Zhang et al., 2016; X. X. Zhu et
al., 2017; Cheng et al., 2017), I came to the conclusion, that the best idea would be to
do some kind of object detection on satellite imagery. We found the research done by
Z_GIS10, the interdisciplinary Centre of Competence for Geoinformatics at the University
of Salzburg. They conducted research on “Dwelling Detection” (Spröhnle et al., 2014).
This is an approach to analyze satellite images of refugee camps by finding and count-
ing all dwellings i.e. tents in the camp, and from that estimating the number of people
living in the camp. The detection of the dwellings is traditionally done by using classic
object-based image analysis (OBIA) workflows (Tiede et al., 2017). Recently in 2018, first
approaches (Ghorbanzadeh et al., 2018) of using machine learning for object detection
were made. The most promising approach (Quinn et al., 2018) used Mask R-CNNs (He
et al., 2017) for dwelling detection.

I decided to develop a dwelling detection workflow for the HUMAN+ remote sensing mod-
ule. The technical backbone is a Faster R-CNN (Ren et al., 2017), which is based on the
same platform as the Mask R-CNN (He et al., 2017) used in (Quinn et al., 2018).

10http://zgis.at/

2. Methodology 5

2. Methodology

2.1. Theoretical Background

2.1.1. Geographic Information System

Satellite imagery, as well as remote sensing data in general, is geographic data. This
means, that the data is related to the earth and that it can be associated to a certain
coordinate on the earth. Technically, that is done by saving some kind of coordinate in
the metadata of a dataset. To handle these kinds of data geographic information systems
(GIS) are used. I will give a short overview over the main features and contents of a GIS,
following (Sutton et al., 2009):

A GIS is a graphical application for working with geographic data. Geographical data
consists of two different kinds of information: On the one hand you have measurements
of the earth which were taken at certain places on the earth, e.g. satellite imagery. On
the other hand, you have map data. This data consists of geometrical objects describing
the surface of the earth. Three basic forms exist: Point data, vector data and polygons.
Point data describes a single geographic entity – e.g. a tree, a house, or a volcano.
Vector data describe lines on the surface of the earth, for example roads or borders. With
polygons, things on earth that stretch over a 2-dimensional space, like forests and cities,
are described. These geometrical objects are called “geographic features”.

Geographic features in GIS store both above-mentioned kinds of information. They have
a description of their geometry in a coordinate reference system (CRS) and they have a
so-called attribute table. This table describes what the geometrical object is representing,
which can be measurements taken on the earth or basic information like the examples
given above.

Anyway, satellite data is not saved in vector objects.

The other important type of data in GIS is so called raster data. This is data where
measured intensities are stored on a pixel-based raster. This data can be taken from all
kinds of sensors, be it optical, acoustic or radar sensors. The data is georeferenced by
specifying a CRS and an affine transformation matrix that maps pixel locations in coordi-
nates to spatial positions (Rasterio, 2019). With this, raster data can be mapped into GIS
directly.

The last crucial element to make GIS work are the already mentioned Coordinate Refer-
ence Systems. CRS try to map the three-dimensional earth on a two-dimensional plane.

2. Methodology 6

This is a very complex operation because mathematically, an accurate projection of a
three-dimensional sphere on a two-dimensional plane is not possible. To get a represen-
tation as accurate as possible, thousands of projections, which can be sorted in three main
categories, have been developed. The EPSG Geodetic Parameter Dataset, “a collection
of definitions of coordinate reference systems and coordinate transformations which may
be global, regional, national or local in application” (EPSG, 2019) lists 17574 entries at
the time of writing this thesis (EPSG Geodetic Parameter Registry , 2019). Those three
categories are cylindrical projections, conic projections and planar projections (see Figure
2.1). It is crucial in every GIS-Project to have a coherent CRS.

Figure 2.1: An overview over the different types of projections used in Coordinate Reference Sys-
tems (Sutton et al., 2009). Those projections are a) cylindrical projections, b) conical
projections and c) planar projections.

To put it all together different formats for storing geodata were developed. The most
used format for vector data is shapefile1, originally developed by ESRI Inc. Shapefiles
are storing the geometrical information in a main file and the attribute table in a separate
database, namely dBase, file. Those two are connected by a separated index file. Raster
data is usually stored in GeoTiffs, a special kind of Tiff-images. The image format .tiff was
used because of its lossless storing of raster data. The georeferencing – coordinates,
projections, CRS – are stored directly in the images metadata.

2.1.2. Remote Sensing Data

Remote Sensing is, in its broadest definition, “the gathering of information at a distance”.
From a technical perspective this means, that “Remote sensing is the practice of deriv-
ing information about the Earth’s land and water surface using images acquired from an

1https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

2. Methodology 7

overhead perspective, using electro-magnetic radiation in one or more regions of the elec-
tromagnetic spectrum, reflected or emitted from the Earth’s surface” (Campbell & Wynne,
2011).

The basic workflow of Remote Sensing is described in Figure 2.2: The physical object
is the thing that information should be gathered from. This information in raw form is
acquired using some kind of sensor outputting sensor data. From that, meaningful infor-
mation must be extracted. These can be used for different kinds of applications. Classical
applications are Land Use, Geology, Hydrology, Vegetation and Soil.

Figure 2.2: A generalized Remote Sensing Workflow (Campbell & Wynne, 2011). Physical ob-
jects are measured by sensors producing Sensor Data. From this data information is
extracted. This information can be used in different types of applications. These appli-
cations can be located in thematic areas like Land Use, Geology, Hydrology, Vegeta-
tion and Soil.

Machine Learning on Remote Sensing

In the last years, deep machine learning has been a huge trend and was successful in
many different domains. It has been making

“major advances in solving problems that have resisted the best attempts of
the artificial intelligence community for many years. [. . .] In addition to beating

2. Methodology 8

records in image recognition and speech recognition, it has beaten other ma-
chine learning techniques at predicting the activity of potential molecules, ana-
lyzing particle accelerator data, reconstructing brain circuits, and predicting the
effects of mutations in non-coding DNA on gene expression and disease. Per-
haps more surprisingly, deep learning has produced extremely promising re-
sults for various tasks in natural language understanding" (LeCun et al., 2015).

Naturally, deep machine learning has also been used for processing Remote Sensing
Data. In recent years, deep learning has been used for as different applications as hy-
perspectral image analysis, interpretation of synthetic aperture radar (SAR) images, in-
terpretation of high-resolution satellite images, multimodal data fusion of Remote Sensing
data with, for example, ground data, and 3D-reconstructions of the earth (X. X. Zhu et al.,
2017). All these implementations use different types of sensors, need to extract different
kind of information and are used for a huge variety of applications. This variety of tasks
leads to a use of a wide variety of machine learning techniques.

Before going into the details of machine learning in Remote Sensing, a general framework
for machine learning on remote sensing data (see Figure 2.3) is introduced in (Zhang et
al., 2016). Each machine learning algorithm can be narrowed down to three main com-
ponents: Prepared input data, the core deep network and the expected output data. The
input-output pairs are hereby defined by the application. When defined, the core network
constructs the “intrinsic and natural relationship” of the input-output pair. This network
is usually a “deep architecture composed of multiple levels of nonlinear operations” and
can use supervised training algorithms when ground truth data, i.e. data provided by di-
rect observation and evaluation as opposed to data provided solely by inference, exists
or unsupervised training algorithms when there is no ground truth. When the network is
trained, it can be “employed to predict the expected output data of a given test sample”
(Zhang et al., 2016).

Machine Learning on high resolution satellite images

An important field in Remote Sensing is the work with satellite imagery which can be used
in a wide range of applications such as “natural hazards detection, LULC2 determination,
geospatial object detection, geographic image retrieval, vegetation mapping, environment
monitoring and urban planning”. Due to the increase in spatial resolution of satellite im-
ages from the 1970s until now, new and better applications could be developed and the
ways of analyzing the data changed. While “in the early 1970s, the spatial resolution of
satellite images [. . .] was low and hence, the pixel sizes were typically coarser than, or
at best, similar in size to the objects of interest, [today] the spatial resolution is gradually
finer than the typical object of interest and the objects are generally composed of many
pixels”. Therefore, fine-grained meaningful information can be derived from satellite im-
agery. In this millennium, the traditional methods for doing so were Object Based Image

2Land Use and Land Cover

2. Methodology 9

Figure 2.3: A Deep Learning Framework for Remote Sensing introduced by (Zhang et al., 2016).
Different kinds of input data are inserted into a deep network. The features extracted
from the top layer of the deep network are interpreted by a classifier, outputting data
which is in relation to the input data. In supervised learning, this relation is learned
via backpropagation of ground truth Data.

Analysis (OBIA) methods. Those aimed to “[produce] a set of non-overlapping segments
(or polygons), that is, the partitioning of a scene image into meaningful geographically
based objects or superpixels that share relatively homogeneous spectral, color, or texture
information” (Cheng et al., 2017).

In the last years, Convolutional Neural Networks (CNNs), trained in a supervised fashion,
have emerged as the most powerful method for image classification and object detection
on images and started to supersede OBIA methods as the go-to-method. The greatest
bottleneck for implementing CNNs is the ground truth data needed for training these net-
works. On the one hand, a huge amount of high-quality input data must be available;
on the other hand, this input data has to be annotated by a human, which can take a
lot of time3. For Land Use classification, i.e. satellite imagery classification, some open
datasets exist (Cheng et al., 2017), for object detection; no datasets specialized on satel-
lite imagery exist. Therefore, it is possible, that, when developing new machine learning
applications, you must create your own dataset. (Cheng et al., 2017) define three require-
ments for a high-quality dataset, which must be thought of when creating a dataset:

− A large number of images/objects per class and a large number of images/objects
in the dataset.

3The creation of the object detection dataset MS COCO (Lin et al., 2014) utilized over 70.000 worker hours.

2. Methodology 10

− For each class, big variation in image/object translation, spatial resolution, viewpoint,
object pose, illumination, background and occlusion.

− A high within class diversity and between class similarity.

Dwelling Detection

I concluded that our working hypothesis, that machine learning is applicable with good
results on remote sensing data, could be right after reviewing the state of research on
the topic. Still, it was not clear how to concretely transform the working hypothesis into a
specific application. A crucial question that needs to be answered to concretize what to
develop is what kind of physical objects are going to be analyzed. Problematic on satellite
imagery is, that even if we have a fine-grained spatial resolution, humans are not or just
rarely visible on satellite images. The best spatial resolution in commercially available
satellite imagery today is around 30cm per pixel4 and therefore a human is lost in the
averaging of the input intensities over one pixel.

In papers of the OBIA_Lab at the Z_GIS department of the University of Salzburg5 a
feasible approach can be found. These papers cover research on a technique called
“dwelling detection”. Dwelling detection aims to analyze the number of people living in a
refugee camp using (very) high resolution satellite imagery. In one of the first automated
approaches on this kind of analysis, refugee camps were divided into separate areas.
On these areas, a statistical linear regression analysis was carried out to find the rela-
tionship between area and population. While getting promising results, it is argued that
“a more complicated, but potentially more accurate, method of estimating population via
remote sensing is through dwelling unit counts and corresponding in situ information on
the number of persons occupying each dwelling unit” (Bjorgo, 2000).

This approach has been followed by numerous predecessors. (Giada et al., 2003) were
one of the first to adopt a hierarchically segmentation approach for dwelling detection on
a camp in Tanzania. (Spröhnle et al., 2014) carried out a broad study comparing semi-
automated object based approaches with manual image analysis of a camp in Somalia.
They found that the semi-automated object based approach lead to more consistent re-
sults than the manual approach while only taking a fraction of the time. (Tiede et al., 2017)
introduced an advanced stratified template matching OBIA algorithm with input data from
10 different camp sites taken by 16 satellites. (Aravena Pelizari et al., 2018) developed
an advanced OBIA algorithm using multi-sensor feature fusion on data from the Al Zaatari
camp, a refugee camp in Jordan.

In 2018, first approaches solving the problem of dwelling detection and extraction with
neural networks have been made. At the department of Geoinformatics at the University
of Salzburg, first experiments on dwelling extraction on one camp, the Minawao refugee

4http://www.ball.com/aerospace/programs/worldview-3
5http://obia.zgis.at/

2. Methodology 11

camp in northern Cameroon have been made. (Ghorbanzadeh et al., 2018). They built
a CNN and train it on one camp. Further they compare it with an object-based approach
using handcrafted features. They note that both approaches detect dwellings with similar
accuracies, having F1 scores between 85.2% and 96.3% on three classes. Concerning
the CNN, they suspect that its transferability to images from the same or highly similar
camps is good, but the transferability to different situations and camp-structures is low.
Solving this problem would require a large set of training data, which is a problem con-
cerning refugee camps. Going much further, (Quinn et al., 2018) use a Mask R-CNN,
an architecture capable of semantic segmentation building up on Faster R-CNN, to build
a more general dwelling detector. They train their model on thirteen camps achieving a
mean Average Precision (mAP) over 0.7 for all camps but two when analyzing images of
camps not seen by the network while training. Their classifier is not putting out bounding
boxes, but segmentations of each dwelling. Given the information which spatial resolu-
tion one pixel has, the roof area of one dwelling can be calculated. (Quinn et al., 2018)
compare the performance of the net on a satellite image that the net has never seen
while training and with an image the net has at least seen some parts of while training.
They conclude that training a net on parts of the image can have a good effect when the
dwellings in the camp inhabit unique features compared to the other camps the net was
trained with. Still, the base that has not seen the image while training is able to yield ac-
ceptable results. Further they propose an adaptive, iterative learning strategy to improve
the detector.

Refugee Camps

Crucial for a working dwelling detection workflow, especially one relying on machine learn-
ing, is to take as many kinds of refugee camps in consideration. Regarding the organi-
zation of the camps, the situation they were built in as well as the amount of people in a
camp; characteristics of different camps can vary tremendously.

One kind of camps in Europe have been closed refugee camps and detention centers.
(Katz, 2016). Similar camps exist outside Europe in the form of processing centers in
transit countries to Europe. “Many of these camps are run by private companies [. . .] and
located in isolated places, remote from other built environments and from urban centers”
(Katz, 2016).

Different from that are huge camps in crisis regions, run by the UNHCR6. An example
for one of these camps is Zaatari, Jordan. The tents used in these camps are often stan-
dardized UNHCR tents, with the classical version sheltering families of five members. The
tent structure in those camps depends on how they were built. When built following official
planning guidelines, “rigid spatial order in the form of a grid and a clear layout of functions”
emerge while a more spontaneously built camp, relying on “squatting practices initiated
by the refugee’s themselves” leads to a less controlled camp-structure (see Figure 2.4).

6https://www.unhcr.org/

2. Methodology 12

The Zaatari-camp inhabits both kind of structures, also because strict guidelines couldn’t
be enforced due to a rapid growth of inhabitants7. Overall, Zaatari became synonymous
with planning failure (A. Dalal et al., 2018).

Figure 2.4: The developement of the spatial structure of the Zaatari-Camp (A. Dalal et al., 2018).
In January 2013 it was tried to organize the logistics of the camp after guidelines.
Following the guidelines became difficult in February 2013 when the number of inhab-
itants in the camp increased drastically. In July 2017, self-organized structures relying
on squatting practices of the inhabitants had formed.

Another kind of camp are so-called makeshift camps. These are created by “forced mi-
grants, [. . .] insisting on continuing the journey to their preferred destination and refusing
to stay in camps which are opened by the authorities, [. . .] who are both their residents
and their constructors.” Location wise, “these makeshift camps are often erected not far
from or within existing built environments, nestled in urban centers or in the outskirts of
cities” (Katz, 2016). Due to their nature, it cannot be predicted, where these camps are
created:

“The creation of these built spaces seems to be completely arbitrary, since they
are constituted in unexpected times and places in relation to various social,
economic and political conditions. But where there is an enforced restriction
of movement, camps will form” (Katz, 2016).

Extreme forms of makeshift camps are the so called jungles. They often form in front of
transit stations at borders, which are the only way to cross otherwise closed borders. In
early 2016, two jungles formed at the Klebia-Tompa and Horgos-Röszke transit stations,

7The number of inhabitants rose from 50.000 people in January 2013 to 200.000 in May of the same year.

2. Methodology 13

both located at the Serbian-Hungarian border. There “were about 190 people in front
of the Kelebia-Tompa transit zone.” These jungles are characterized by appalling living
conditions: “There was no sanitation other than one water pipe, and inhabitants told us
that insufficient food and non-food items were distributed” (Beznec et al., 2016).

2.1.3. Deep Learning

As mentioned above, deep learning has been widely successful in the last years, marking
a shift in the fields of pattern recognition and deep learning. This fundamental change of
methods is described by (LeCun et al., 2015) as following:

“For decades, constructing a pattern recognition or machine learning system
required careful engineering and considerable domain expertise to design a
feature extractor that transformed the raw data [. . .] into a suitable inter-
nal representation of feature vector from which the learning subsystem [. . .]
could detect or classify patterns in the input. [. . .] Deep-learning methods
are representation-learning methods with multiple levels of representation, ob-
tained by composing simple but non-linear modules that each transform the
representation at one level [. . .] into a representation at a higher, slightly more
abstract level.”

To get an overview how these achievements are implemented technically I will shortly
discuss the most important aspects and techniques of deep learning and especially of
Convolutional Neural Networks, following (LeCun et al., 2015):

The basic principle of successful deep learning is combining a neural network (a network
of the above mentioned “simple but non-linear modules”, called neurons) with a super-
vised learning approach. Supervised learning is characterized by training the network
with a so called ground truth, which is a classified or labeled dataset, the so called train-
set, where the classes in the dataset are those the network is supposed to classify after
training.

(LeCun et al., 2015) describe the training process as following:

“During training, the machine is shown an image and produces an output in
the form of a vector of scores, one for each category. [. . .] We compute an
objective function that measures the error (or distance) between the output
scores and the desired pattern of scores. The machine then modifies its inter-
nal adjustable parameters to reduce this error. These adjustable parameters,
often called weights, [. . .] define the input-output function of the machine. To
properly adjust the weight vector, the learning algorithm computes a gradient
vector that, for each weight, indicates by what amount the error would increase
or decrease if the weight were increased by a tiny amount. The weight vector
is then adjusted in the opposite direction.”

2. Methodology 14

To compute an output of the network which can be evaluated by the ground truth, the
input data must be sent through the layers of the neural network. To conduct this so called
forward-pass, the data is passing each layer consecutively. In one layer, the set of neurons
compute a weighted sum in one way or another with the output of the previous layer as
input and pass the result through a non-linear function to the next layer.

The algorithm for adjusting the internal weights, the backward pass, is called Backprop-
agation. The basic concept of backpropagation is applying the chain rule of derivatives
backwards through the hidden layers of the network. The algorithm begins at the classifi-
cation layer of the network, calculating the error between the classification and the output
which is then used to calculate the gradient for the last hidden layer in the network. This
gradient is then used to calculate the next gradient in the hidden layer before the last one.
This process is repeated until the input layer is reached.

After training a network in a supervised way, it is commonly tested on a second labeled
dataset, the test-set. When testing the network, the forward-pass, meaning the training
procedure to the point where the error between output and ground truth is computed, is
conducted while the backward-pass is cancelled. Instead, the error is stored for each
input-data element and averaged after testing the whole test-set. The obtained average
error is a measurement for how good the network is generalizing on data it hasn’t seen
before.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been widely successful in the last years and
have “recently been widely adopted by the computer-vision community” (LeCun et al.,
2015).

CNNs are built on four key ideas: local connections, shared weights, pooling and the
use of many layers. Further, they were inspired by “the classic notion of simple cells and
complex cells in visual neuroscience” (LeCun et al., 2015; Hubel & Wiesel, 1962). A CNN
typically consists of two separate sub-networks: The first network which is computing a
feature vector out of the input data and the second network classifying the feature vector.
Both networks can be trained with backpropagation.

The first network consists typically of convolutional and pooling layers. A convolutional
layer consists of several feature maps, where the input data from the layer before is stored
and several filter banks. Those filter banks are sliding window filters, going over the feature
maps of the convolutional layer. The peculiarity of these filter banks is, that the weights in
the filter are learned by backpropagation. Each of these filter banks is then generating a
new feature map in the next layer after the filter output is passed through a non-linearity
function. The most common non-linearity today is a rectified linear unit (ReLU). While
convolutional layers ought to detect features in images, pooling layers try to “merge se-
mantically similar features into one by reducing the extent of the feature map”. The most

2. Methodology 15

popular approach, max pooling, takes the maximum from a patch and writes it in the out-
put. The patch is thereby sliding over a feature map with a stride bigger than one, which
“[reduces] the dimension of the representation and [creates] an invariance to small shifts
and distortions.” (LeCun et al., 2015).

The second network is a classifier, classifying the results of the last layer of the first
network. How it is built up depends on the task the CNN must solve. In the classic
application of image classification, the second part of the network often consists of a few
fully connected layers with a softmax-classifier analyzing the output.

The features detected by each layer in the first part of the CNN get more abstract and high-
level the deeper they are in the network. The main reason why CNNs are so successful
is that natural signals are composed in a similar, hierarchical way:

“In images, local combinations of edges form motifs, motifs assemble into
parts, and parts form objects. Similar hierarchies exist in speech and text
from sounds to phones, phonemes, syllables, words and sentences” (LeCun
et al., 2015).

CNNs popularity increased drastically after the introduction of AlexNet/SuperVision (Krizhevsky
et al., 2012) which won the ImageNet challenge (Russakovsky et al., 2015) by a huge
margin compared to its competitors using handcrafted features.

Figure 2.5: Architecture of the AlexNet, which won the ImageNet challenge in 2012. A sequence
of alternating convolution- and pooling-layer with fully connected layers at the end of
the network can be observed (Krizhevsky et al., 2012).

Regional Convolutional Neural Networks

Object Detection on images is a long and broadly researched topic. It consists of two
tasks: Finding an object in an image and classifying the found object. The output of
the task is an image with bounding boxes framing objects in the image and class scores
determining the object class of the object in the bounding box.

2. Methodology 16

The image classification task was revolutionized when AlexNet was introduced in 2012
(Krizhevsky et al., 2012) and superseded hand-crafted feature detectors as the go-to-
technique for image classification. The same shift can be seen in object detection: In 2010
to 2012, the winning entries of the PASCAL VOC challenge, the benchmark challenge
in the object detection community (Everingham et al., 2010), used handcrafted features
based on the techniques SIFT (Lowe, 2004) and HOG (N. Dalal & Triggs, 2005). In
2014 R-CNN was introduced, which uses a Convolutional Neural Network and supervised
training for object detection and improved the results of the PASCAL VOC 2012 challenge
by more than 30% (Girshick et al., 2014).

(Girshick et al., 2014) define two fundamental problems that need to be solved to transfer
CNNs for object detection: The localization of objects and a scarce amount of training
data. Localization in object detection is traditionally done with a sliding window approach.
This is problematic for a CNN because deeper convolutional layers have, due to pooling
in-between convolutional layers, a large receptive field and stride on the original image,
making localization inaccurate. R-CNNs solve that problem by analyzing pre-computed
region proposals for objects on the image. The second problem, scarce training data, is
solved by pre-training the net on a large, auxiliary dataset and then fine-tuning it on a
smaller, domain-specific dataset.

The R-CNN in (Girshick et al., 2014) consists of three modules (see Figure 2.6): A cate-
gory independent region proposal module, a large convolutional neural network and a set
of class-specific linear SVMs (Hearst et al., 1998), classifying the output feature-vector of
the CNN.

The first module utilizes a state-of-the-art algorithm for extracting category-independent
region proposals. An R-CNN can use any algorithm that offers these proposals. In their
paper, (Girshick et al., 2014) use the Selective Search (Uijlings et al., 2013) algorithm.
The second module is an implementation of the CNN introduced in (Krizhevsky et al.,
2012). Each region is forward through the network separately. The network requires a
fixed input size; therefore each region has to be warped to that size first. The output of
the module is a 4096-dimensional feature vector. This feature vector is analyzed by a set
SVM’s, each trained for one class. The results for each class are processed with greedy
non-maximum suppression.

The R-CNN is trained in two stages: The first stage is a supervised pre-training with
a large dataset for an auxiliary task. The dataset only needs image-level annotations,
meaning no bounding box labels. After initially training the network on an image dataset,
the architecture has to be rebuild and a second stage, domain-specific fine-tuning, is
carried out. To adapt the network, the classification output layer for the auxiliary network
has to be replaced with an output layer fitting to the classes of the new dataset. Further,
it has to be defined when an analyzed proposal is treated as a positive. (Girshick et al.,
2014) treat all regions, which have an IoU8 >= 0.5 with a ground truth box as a positive for
the highest-scoring class in the bounding box. Further a learning rate has to be set and

8IoU: Intersection over Union

2. Methodology 17

an stochastic gradient descent (SGD) mini-batch, containing positive class windows and
background windows, has to be defined. In addition to the output feature vector, classified
by the set of SVM’s, a bounding box regressor is trained. Using a linear regression model,
a new detection window is trained, refining the Selective Search object proposals.

Figure 2.6: The architecture of an R-CNN. Region proposals are warped into the input size of the
CNN. The CNN computes class securities for each proposal (Girshick et al., 2014).

Fast R-CNN

While the R-CNN was a huge leap forward for deep object detection, it has some major
drawbacks in its architecture, described in (Girshick, 2015). The first drawback concerns
the training algorithm which is multi-staged: First, the CNN is trained using log-loss, then
the SVMs are fitted to the CNN and finally the bounding box regressors are learned.
The second drawback is that the training is furthermore slow and expensive. All features
extracted from object proposals, extracted from the initial image, are written to disk. This
takes a lot of time and a lot of disk space. The third major drawback is that object detection
is slow. The reason for that is that every object proposal has to go through the forward-
pass of the network.

Fast R-CNN (Girshick, 2015), building on the architecture of the original R-CNN, is fixing
these problems by adjusting R-CNNs architecture where it’s necessary. This results in an
architecture which has higher detection quality than its predecessor, has a single-stage
training workflow which can update all network layers using a multi-task loss and requires
no disk storage for feature caching.

The Fast R-CNN workflow consists of four steps, utilizing different modules inside the
network architecture (see Figure 2.7). A Fast R-CNN takes an image and a set of region
proposals as input. The first module of a Fast R-CNN is a CNN. The CNN takes the image
to be analysed and calculates a feature vector as its output. In the second step, the object
proposals are utilized. For each proposal, a special Region of Interest (RoI) pooling layer

2. Methodology 18

extracts a fixed length feature vector associated with the proposal from the input image
from the CNNs feature vector. This object proposal specific feature vector is then fed in the
third step into two fully connected layers, outputting a RoI feature vector. This RoI feature
vector is fed in the fourth step into two separate output layers: A softmax probabilities
estimator outputting class-probabilities over all trained classes K plus a background-class
and a bounding box regressor outputting four offsets for each class for each bounding box
resulting in 4*K values.

A Fast R-CNN is, like R-CNN, relying on a network pre-trained on a large, auxiliary
dataset. To convert a pre-trained network into a Fast R-CNN, some adjustments have
to be made: First, the last pooling layer of the pre-trained network is replaced with a RoI
pooling layer which is compatible to the first fully connected layer. Second, the last fully
connected layer has to be replaced by the two sibling layers described above. Third, the
input has to be modified so that images and object proposals are accepted.

The RoI pooling layer is a special layer developed for Fast R-CNN. It converts the features
insid any valid region of interest into a small feature map with the fixed spatial extends H
x W. A RoI is defined as a rectangular window into a convolutional feature map. Pooling
works by max-pooling a h x w RoI into a H x W grid consisting of h/H x w/W sub-windows.
Pooling is done on every feature map separately.

The fine-tune training of the Fast R-CNN takes advantage of feature sharing through the
different tasks during training. Both networks, the softmax classifier as well as the bound-
ing box regressor are trained simultaneously using backpropagation. The backpropaga-
tion algorithm is adapted so that backpropagation through the RoI pooling layer is pos-
sible. The joint optimization of both outputs is achieved through a multi-task loss term.
The loss term ads the log-loss for the softmax classifier and the L1 regression loss. The
regression-loss term is only evaluated when the proposal is a positive sample and not a
background sample.

Shared computation is also thought of when building a SGD mini-batch. Region proposals
in a mini-batch are sampled from one or two images. Therefore, for training with all pro-
posals, only one, respectively two forward passes for the input images have to be carried
out. In one mini-batch, 75% of all proposals are negative background proposals (IoU with
ground truth box < 0.5) and 25% are positive samples, representing an object.

When used with real data, one image and a list of object proposals are used as input of
the network. The image is processed once through the first CNN until the RoI pooling
layer is reached. For each region proposal, the RoI extracts the associated feature vec-
tor out of the input images feature vector. The extracted feature vector is then analysed
by the sibling networks. The output of the Fast R-CNN is for every RoI one class prob-
ability distribution and a set of predicted bounding-box offsets relative to the proposals
coordinates.

During experiments (Girshick, 2015) found out that Fast R-CNN achieves state-of-the-
art mAP, is faster in training and testing than its predecessors and that fine-tuning the

2. Methodology 19

backbone CNN improves mAP. Further findings are that multi-task training improves per-
formance, that deep CNNs directly learn scale invariant features from the data, that larger
training sets slightly improve performance, that softmax classifiers yield better results than
SVMs and that fewer but high quality object proposals improve the networks accuracy.

Figure 2.7: The architecture of a Fast R-CNN. The image is first processed by the CNN back-
bone of the network. Then region proposals are pooled into a classification network
consisting of two fully connected layers using a RoI pooling layer. The fully connected
layers are outputting class securities using a softmax classifier and bounding box off-
sets using a regression (Girshick, 2015).

Faster R-CNN

Fast R-CNN showed that CNNs for object detection are widely successful and have a fast
detection time. Detection on one image using Fast R-CNN takes roughly two seconds.
Interestingly, computing the convolutional features happens in near-real time while com-
puting the object proposals using classic computer vision algorithms takes the biggest
amount of computation time, making this step the bottleneck regarding detection perfor-
mance. Faster R-CNN (Ren et al., 2017) solves that problem by introducing a Region
Proposal Network (RPN).

Faster R-CNN is a Fast R-CNN that obtains the required region proposals by the RPN
(see Figure 2.8). The RPN is located between the feature vector outputted by Fast R-
CNNs backbone CNN and Fast R-CNNs RoI pooling layer. That means that RPN shares
convolutional layers, the backbone CNN, with the initial Fast R-CNN which enables nearly
cost-free proposal computations. The feature maps used for region-based detectors can
also be used for region-based proposals. RPN and Fast R-CNN form a unified network:
Faster R-CNN. Looked at from another perspective, Faster R-CNN is a “Neural Network
with attention” (Ren et al., 2017), with the RPN telling Fast R-CNN where to look.

2. Methodology 20

A RPN is a fully convolutional network. That means that the output has the same dimen-
sion as the input. The input of the RPN is, when considering the whole network including
the shared CNN backbone layers, the input image to be analyzed. When considering only
the RPN-head stacked on the backbone CNN, the inputs are the feature maps produced
by the last convolutional layer of the backbone. The RPN outputs a set of rectangular
object proposals, each with an objectness score. Objectness is defined for a proposal as
belonging to a set of object classes or belonging to the background, not encapsulating an
object.

The RPN architecture consists of the backbone CNN and the RPN head. The backbone
CNN can be any CNN pre-trained for image classification. The RPN head consists of a
layer sliding a window over the last feature maps of the backbone CNN and two output
layers, a box-regression layer reg and a box-classification layer cls. The sliding window
layer calculates a set of k so called anchors on every location it visits. Anchors are rect-
angular boxes which are analyzed if they could be proposals. Typically, nine anchors are
calculated. For calculating anchors, three anchor-sizes and three anchor-ratios which are
all combined with each other are used. These anchors are supposed to cover all possible
objects in an image. The resulting convolutional map has the size W x H and has nine
anchor definitions on each location. Each anchor is then fed into the two sibling output
layers. The cls-layer calculates if the anchor is an object and the reg-layer refines its coor-
dinates. The anchors with the best objectness scores can then be used for the further Fast
R-CNN workflow. Using anchors has two main benefits: Anchors are translation-invariant
and anchors fit multiple scales of objects.

For training, anchors are labelled with a binary label – being an object or not - using the
ground truth boxes of the input image. An anchor is labelled positive when it either has
the highest IoU overlap with a ground truth-box compared to all other anchors or when it
has an IoU overlap higher than 0.7 with any ground-truth box. Anchors are labelled as
negative or background when the highest IoU overlap to a bounding box is lower than
0.3. All anchors not falling in those categories do not contribute to the training. The loss
function for training is a multi-task loss, combining the classification and regression losses.
Regression is performed for one anchor to the nearest ground truth bounding box. The
RPN-head-weights are initialized with a zero-mean Gaussian distribution with standard
deviation 0.01. For training the standard backpropagation and stochastic gradient descent
algorithms are used. For one SGD mini-batch, 256 anchors are sampled from one image
with a positive to negative ratio of 1:1 if possible.

For training the whole network, the RPN and the Fast R-CNN should be trained indepen-
dently because both training procedures modify the network in different ways. Different
training approaches can be used: When using alternating training the RPN is trained first.
Then the Fast R-CNN is trained using the proposals generated by the RPN. This process
can be iterated. Approximate joint training merges the RPN and the Fast R-CNN into one
network during training. In the forward pass of the training, proposals are generated by the
RPN which are then used by the Fast R-CNN. During backpropagation, the RPN loss and

2. Methodology 21

(a) Faster R-CNN Architecture. (b) RPN Architecture.

Figure 2.8: The architecture of a Faster R-CNN and the RPN head. The RPN is located between
the last convolutional layer of the CNN and the Fast R-CNN head. In the RPN, an
anchor is set for each location on the feature map of the last convolutional layer of the
CNN. The RPN is outputting if the anchor is encapsulating an object as class security
and bounding box offsets to the anchor (Ren et al., 2017).

the Fast R-CNN loss are combined when training the shared layers. This training work-
flow produces results close to Alternating Training while reducing training time by about
25-50%. In (Ren et al., 2017) an alternating training process is used. First, the RPN
is trained and after that the Fast R-CNN. Then, the RPN-specific layers are fine-tuned
followed by fine-tuning the Fast R-CNN specific layers.

After experiments, (Ren et al., 2017) conclude that Faster R-CNN yields results as good
as Fast R-CNN using precomputed proposals while being much faster than Fast R-CNN.
Sharing convolutional layers between RPN and Fast R-CNN even improves the perfor-
mance. A reason for that could be that fewer inconsistencies between training and testing
proposals exist. Furthermore, the top-ranked RPN proposals can be seen as accurate.
Another advantage is that using deeper networks for RPN and Fast R-CNN improves the
performance.

Object Detection Evaluation Metrics

Convolutional Neural Networks are usually evaluated using three different ground truth
datasets derived from an initial ground truth dataset: the training set, the validation set
and the test set. The initial ground truth dataset is split into two sets: The training set
is the dataset the CNN is trained on during training process. It is the bigger subset of

2. Methodology 22

the initial dataset. The validation set is a subset of the training set. It is used to test the
performance of a CNN during the training process. It can therefore give information about
the training history. The test set is the other subset of the initial data. It is used after the
training for evaluating the obtained classifier. The training set should not be seen by the
classifier before (Goodfellow et al., 2016, p.118).

For object detection, several metrics for evaluating an object detector and classifier exist.
Object Detectors can yield for different kinds of results: True Positives TP , False Posi-
tives FP , True Negatives TN and False Negatives FN . These types of results can be
visualized in a confusion matrix (Figure 2.9).

Figure 2.9: Confusion Matrix showing all possible results of a classification. Recall is calculated
using True Positives and False Negatives, Precision is measured using True and
False Positives.

Out of these kinds of results, the three mostly used basic measurements can be calculated
(Sokolova et al., 2006):

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

Accuracy is therefore the ratio of all right detections to all detection. It is a commonly used
metric but gives deceiving results when working on an imbalanced classification problem.
It is therefore not recommendable for reliable evaluations of a classifier. Precision is a
value indicating to the ability of a classifier to find only the relevant points in a dataset.
The value lowers when classifying an element as positive when it’s negative. Recall is
giving a measurement of how many of the positive elements in the dataset are found by
the classifier. It is increasing with every True Positive found. Precision and Recall are
widely used in object detection.

When trying to optimize recall, it is a good strategy to try to classify as much data points as
possible as positives. Because False Positives are not in the Recall-equation they don’t
harm the value. On the other hand, that strategy lowers the precision significantly. To
optimize precision, it is a good strategy to try to classify as few as possible data points

2. Methodology 23

that are negative as positive. That can be done by setting a high threshold for classifying
something as positive. This strategy strengthens precision but lowers recall. For having a
better value to be optimized, the F1 score can be calculated. This is the harmonic mean
of Precision and Recall.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(2.4)

Another way of interpreting precision and recall is he Precision-Recall-Curve. (Everingham
et al., 2010) The PR-Curve is important for calculating the most important metric for ob-
ject detection: Average Precision (AP). The basic assumption of the curve is that Recall
increases with every true positive found and that for every Recall value a Precision value
can be calculated. On the PR-Curve, the recall values between 0 and 1 are on the x-axis,
the associated precision values are on the y-axis. It can be seen that the curve has the
form of a zig-zag curve because every True Positive elevates the Precision while Recall
can also be elevated by False Negatives. The Area under Curve of the Precision-Recall-
Curve is the Average Precision (AP) of the classifier. Average Precision is an important
value for the evaluation of object classifiers.

To calculate Average Precision, the zig-zag curve is often smoothed, taking the local max-
ima of the curve and replacing each precision value with the local maxima to the right. To
measure the Area under Curve, the Average Precision, different approaches are used.
The Pascal VOC challenge uses an interpolated AP, meaning that the Precision is mea-
sured at 11 recall values (0, 1) and calculating the mean under each point. For the COCO
challenge a similar but stricter calculation is used by setting a 101-point interpolated AP

Average Precision is mostly not used directly for evaluating an object classifier but many
AP values that are calculated on the classifier are summarized as mean Average Preci-
sion (mAP). (Everingham et al., 2010) The APs can be calculated for each class and for
different IoU thresholds for the overlap of a finding with a ground truth box. The measure-
ments defined for the COCO dataset can be found in Figure 2.10.

Machine Learning Frameworks

To utilize a Faster R-CNN I use the Facebook AI Research (FAIR)9 software Detectron.
Detectron is part of facebooks AI environment (Joulin & Paris, 2015). Detectron is built on
the Deep Learning Framework Caffe2, which was merged with Facebooks Deep Learning
Framework PyTorch on 02. March 2019 (Caffe2, 2018). Detectron was developed by,
among others, Ross Girshick, Georgia Gkioxari, Piort Doll and Kaiming He who all have
worked as author or co-author on various R-CNN papers mentioned above. It features the
implementations presented in these papers.

9https://ai.facebook.com/research/

2. Methodology 24

Figure 2.10: Evaluation metrics used for the COCO dataset. AP and AR are calculated as mean
Average Precision and mean Average Recall over different levels of IoU and over
different Bounding Box sizes (Consortium, 2019)

2.2. Implementation

For the HUMAN+ project, the described Dwelling Detection module was built from scratch.
The module consists of two parts: a submodule to create the training data called human-
plus_satprocessing and a submodule to carry out training and analysis of VHR-satellite
imagery using a Faster R-CNN called humanplus_satAI.

Figure 2.11: The architecture and the dataflow of the HUMAN+ SAT module, described in the
following chapter. The training data generation is described in 2.2.1, Faster R-CNN
training is described in 2.2.2 and Dwelling Detection is described in 2.2.3

2. Methodology 25

2.2.1. Training Data Generation

One of the highest obstacles in every Machine and Deep Learning Project is acquiring the
data for training and testing the network. In supervised learning, the burden of creating
meaningful ground truth to the gathered data is added.

Getting the training data was the bottleneck for developing a successful application that
was the problem that had to be fixed first. Faster R-CNN requires an image where ground
truth bounding boxes are placed around the objects that are supposed to be trained. Both
types of data are hard to find.

For researching prices for satellite images from Digital Globe/Maxar10, resellers like Eu-
ropean Space Imaging11 were contacted. It showed that prices for satellite images are
too high to buy them for the HUMAN+ application. Further the Copernicus Emergency
Management Service12 of the European Union was contacted through the Bundesamt
für Bevölkerungsschutz und Katastrophenhilfe13. It was found out that Copernicus EMS
can only be activated when a crisis takes place. Last the Center for Satellite Based Cri-
sis Information (ZKI)14 at the German Aerospace Center (DLR)15 was contacted. They
communicated that they can’t give away satellite imagery due to license issues.

Therefore the solution for the training data problem followed two goals:

1. Using already existing labeled ground truth data and publicly available satellite im-
ages.

2. Automating the process of labeling and processing ground truth data as much as
possible.

An approach for solving that problem can be found in (Quinn et al., 2018) who use a Mask
R-CNN, which is the successor architecture of Faster R-CNN and works in most aspects
like Faster R-CNN.

For training and testing, they use VHR-satellite data from camps, where freely available
dwelling detection annotations, created by experts on the field, exist16. This data was
supposed to be used in HUMAN+ too. The problem is that the annotations are free,
but the underlying satellite images are not. Unfortunately, they are very expensive and
couldn’t be bought in the HUMAN+ project as discussed above.

Because the official satellite images couldn’t be acquired, fitting satellite imagery was
searched for using Google Earth Pro. Google Earth offers for locations of the earth a

10https://www.maxar.com/
11https://www.euspaceimaging.com/
12https://www.copernicus.eu/en/services/emergency
13https://www.bbk.bund.de/DE/AufgabenundAusstattung/Krisenmanagement/GMLZ/Copernicus/Copernicus_node.html
14https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12797/gallery/30434
15https://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10002/
16http://www.unitar.org/unosat/maps, and https://data.humdata.org/organization/un-operational-satellite-

appplications-programme-unosat

2. Methodology 26

set of satellite images via a time-slider in the GUI. To fit the annotation data found to the
satellite image they were made on, the attribute table of the annotations was checked for
information about the satellite image they were taken on. The annotation data is in the
form of Shapefiles, so the attribute table can be read using the open source GIS QGIS
(QGIS Development Team, 2009). In it, the Sensor_ID, specifying which satellite took the
image and the Sensor_Dat, specifying when the image was taken, could be found. For
one of the annotation datasets, dwellings detected on the Juba camp in South Sudan, the
fitting satellite image could be found.

After having found a satellite image with fitting annotations on which a workflow could
be developed, the next problem occurred: Satellite imagery is not downloadable in a
georeferenced format in Google Earth but only savable in standard image formats. To
work around that problem, the image was saved in the highest possible resolution (4800
x 3600 pix), and georeferenced using QGIS.

In QGIS, the shapefile annotations of the Juba camp were loaded and a tool called Geo-
referencer (see Figure 2.12) was used to fit the satellite image taken from Google Earth
on the annotation. In the Georeferencer, one selects points on the raster/the image and
specifies a location they are equivalent to. The easiest way to select the location is to se-
lect a location on the georeferenced QGIS map canvas, the main window on the program
when having a map or other objects giving orientation loaded in the canvas. The points
set on the raster are then used as an input for a function projecting the image accord-
ing to the specified locations into the coordinate reference system defined in the QGIS
project. After precise georeferencing a georeferenced image of the Juba camp with fitting
annotations of its dwellings was received.

Processing of Geodata

After acquiring a minimal working dataset for developing and training a Faster R-CNN
based dwelling detector, the dataset had to be transformed in a form that the Faster
R-CNN implementation can read and use. This workflow for the training data genera-
tion is implemented in the humanplus_satprocessing module and controlled in the cre-
ate_Training_ Data.py script.

The first step is to map the annotations, whose coordinates are stored in geolocations,
to their associated pixel locations on the satellite image. The satellite image contains an
affirmative translation matrix which calculates the geolocation for one of its pixels, defined
in the target coordinate reference system also stored in the satellite images metadata.
To map the annotations to their associated pixel locations, the inverse of the affirmative
matrix, stored in the satellite image, is calculated and each location is multiplied with the
inverse matrix. As a kind of visual debugger, each annotation is mapped on the image by
drawing a point on the pixel the annotation points at and the processed image is saved in
an image file. The pixel locations of the annotations show to be fitting.

2. Methodology 27

Figure 2.12: The QGIS Georeferencer Tool. The satellite image of the Juba-Camp is loaded in
the Georeferencer opened in the window. In the background, the georeferenced
QGIS canvas can be seen. In it, the Open Street Map and the UNHCR-annotations
for the Juba-camp are loaded. The red points connect the annotations with the
raster.

Satellite images often have a very huge size while CNNs work best with small input image
sizes. When working with larger images, a huge amount of operations and data must be
handled during training, making the training process really slow. To address that problem,
the satellite image is cut in several tiles. As tile size 300 x 300 pixels is chosen, assuming
the same tile size as (Quinn et al., 2018).

The image is then cut in tiles and the annotations are mapped on the tile they are onto.
To cut the image into tiles, a padded image whose height and width can be divided by
300 is created and the original image is written into the padded one. After that a 300x300
slice is cut out of the padded image and saved as a tile in an image file. To map the
annotations on the right tiles, two things have to be done: First, it has to be figured out,
on which tile the current annotation is situated on. That is done by dividing the x- and
y-location of the tile on the original image with 300 and rounding off the result. This gives
the tile number in x- and y-direction starting with tile (0,0) in the upper left corner. To find
the exact location on the found tile, the x- and y-value on the original image is subtracted
by 300 multiplied with the found tile number in its respective direction. For every newly
created tile, the corresponding annotations are saved in a separate file. In a last step, the
tiles whose corresponding annotation file is empty, meaning that there are no annotations
on the tile, are deleted to speed up the following steps.

2. Methodology 28

Finding Bounding Boxes

After loading the annotations, cutting the input satellite image into tiles and adjusting the
annotations to the tiles, the annotations must be fitted for a Faster R-CNN. A Faster R-
CNN is trained on bounding boxes. Therefore, the point-annotations have to be trans-
formed to bounding boxes encapsulating the annotated dwellings.

The simplest solution would be to just draw a square around each annotation-point. While
this could work, it would be very inaccurate. Dwellings are often rectangular, there are dif-
ferent types of tents which have different sizes and one tent can have a different size than
the same tent on another image photographed from a different height or with a different
sensor. Therefore a region-fill algorithm is used to find the extent of each tent, assuming
that tents are mostly uniform in its appearance and that they are distinguishable from the
background of the satellite image (see Figure 2.13).

The algorithm initially calculates the mean value of a region in the image. This region is
defined by the pixel an annotation is pointing at and its 4-neighbourhoud. All pixels in the
region are written in a priority queue called regionPoints. Each point in regionPoints is then
loaded in the Seed Growth algorithm. There, each pixel of the points 4-neighbourhood is
analyzed. First it is analyzed if the point was already visited. Therefore the visited array,
an array of the size of the input image where it is marked if the pixel was already assigned
to a region, is checked. If that is not the case, the Euclidian Distance (2.5) of a pixel to the
mean of the region is checked. If this distance is below a threshold, the pixel is marked
as belonging to the region in the visited array and pushed in the regionPoints queue, so
that its neighbors can be checked for membership in the region too. The threshold is one
of four parameters to control the training data generation process.

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2 (2.5)

After that, the found regions are processed so that they fit meaningful bounding boxes
which can be used as training data.

The first step is to create Bounding Boxes, using the function createBoundingBox(visited,
nRegions, offset). The function is looking at every region found except the background-
region with the label 0 in the visited array. The minimal and the maximal x- and y-values
are found, and offset is added to them. The smallest x- and y-value form the coordinate for
the top-left-coordinate of the bounding box, the biggest x- and y-value form the coordinate
for the bottom-right-coordinate. The offset is the second of four parameters to control the
training data generation process. There are two reasons for adding it: On the one hand
it adds some context to a bounding box. The idea is that it will give the Faster R-CNN
more information about the features at the edges of tents. On the other hand, it clears
up issues where the seed growing algorithm is not accurate enough and just finds parts

2. Methodology 29

(a) Initial Tile (b) Found Regions (c) Processed Tile

Figure 2.13: Bounding Box Workflow for a Tile from Calais Camp. On a), the original tile can be
seen. b) shows the found regions. On c), the segmented regions are colored in ran-
dom colors. The bounding boxes are drawn around the regions. The green point
shows the initial annotation.

of the tent. Adding an offset can help fitting a box that includes the whole dwelling. The
found bounding boxes are appended to the list boundingBoxes.

The created bounding boxes are then evaluated and filtered in evaluateBoundingBox(offset).
Especially in images where there is a low contrast between dwellings and background, a
huge inhomogeneity on the features of tents or a generally bad image quality, the seed
growth algorithm can yield bad results. These cases are supposed to be filtered out by
checking, if the sides of the bounding box are smaller than a minBox or longer than a
maxBox parameter. If one of these cases occurs, the bounding boxes are marked as
corrupted and not used for training. The length of the sides is evaluated without the
offset-parameter. The minBox and the maxBox parameter are the third and the fourth of
four parameters to control the training data generation process.

After determining the found bounding boxes, the bounding boxes itself and the region is
drawn on a copy of the input tile using the methods drawRegions() and drawBounding-
Box(). Valid regions are drawn in a random color with the bounding box around them;
corrupt regions are drawn grey without a bounding box around them. Further the initial
annotation is marked on that tile with a red pixel, using the method printAnnotations().
Finally, the visited array is saved as a separated image, using the method printVisited().
Both output images can be used to check if the algorithms are working properly.

Formatting Training Data

The last step to make the data useable for training a Faster R-CNN in the Detectron im-
plementation is writing it in the Microsoft COCO (Common Objects in Context) annotation
format (Lin et al., 2014). The COCO dataset is a benchmark object detection dataset and

2. Methodology 30

offers ground truth data for object detection tasks including object detection with bounding
boxes, image segmentation, image captioning and keypoint detection. For the dataset,
its own annotation format was developed which today is widely used for object detection
tasks.

The COCO annotation format is written in JavaScript Object Notation (JSON). On the first
level it contains five JSON objects: info, licenses, images, annotations and categories.
The info-object contains an array of objects describing the dataset with a description, a
url, a version, a year, a contributor and a date_created object. The license object allows
specifying various image licenses. They are characterized by a url, an id and a name.
The categories-object specifies all categories that are in the dataset. The categories are
each stored in a JSON array containing the objects supercategory, id and name. The
id-object is referenced by annotations to add ground truth, the name-object giving context
to the id. The supercategory -object is used to organize datasets with a huge number of
categories.

The info, license and categories objects specify information concerning the whole dataset.
Therefore, they can be filled before processing the training data whereas the images and
annotations objects refer to the tiles and bounding boxes created by processing the input
satellite image and shapefile annotations. This makes it necessary to fill them after the
training data procession.

First, the images-object is filled. Every image-tile is stored in a separate JSON array, con-
taining the objects license, file_name, height, width and id. The license-object is storing
the license id specified for the related license in the license object. id is a unique identifier
for each image, the other three objects store further meta-data. Before adding a tile to
the JSON file, it is checked if the id of the tile is already stored in the images object of
the file to avoid duplicate entries. For the HUMAN+ dataset the ID for one tile is build the
following:

Tile Id = <Id of image, int><y-value of tl17 in orig. image><x value of tl in orig. image>

After adding the image in the image object to the JSON output file, the annotations made
on the tile are added to the annotation object of the JSON file. The annotation object
consists of one array for each annotation, containing the objects segmentation, area,
iscrowd, image_id, bbox, category_id and id. Segmentation is a field which is necessary
for semantic segmentation tasks and is filled with ground truth data. Due to the Detectron
implementation it needs to be filled so it is filled with the corner points of the bounding
box. The area-object is filled by multiplying width and height of the bounding box. Is
crowded is a parameter that can be checked for images where a lot of objects of the
same category overlap and are annotated by one bounding box. This is not the case in
the HUMAN+ dataset. The image_id-object refers to the id specified for the image the
annotation is made on. The bbox stores the bounding box coordinates by storing the y-
and x-coordinates of the top-left corner, the width and the height. category_id refers to

17Top left corner

2. Methodology 31

the id specified for the associated category in the categories object. The id-object stores
the id of the annotation which is built as following:

Annotation Id = <Tile Id><Id for specific annotation>

2.2.2. Faster R-CNN Training

Training Data Creation

To create the HUMAN+ dataset used for training a network data from more than one camp
is put together in a dataset. After analyzing the first camp, the variable EXPAND_DATASET
has to be set True to add data to an inchoate dataset. If this variable is set False, a new
JSON file for storing the training data in the COCO annotation format is created and al-
ready existing files are deleted.

Eight images of camps (see Appendix A.2) located on the Balkan route between Syria and
northern France have been used for testing the dwelling detection application. All camps
but Rukban have been used for training the Faster R-CNN. Rukban wasn’t included be-
cause it was offered by a HUMAN+ project partner after the other images were annotated.
These camps have a huge variety in the surrounding landscape (from the Rukban camp
located in a desert to the Basroch camp located on a clearing in a forest), the organiza-
tion form (from a planned and organized structure to the unorganized “jungle” of Calais),
the size (from a city like structure in Zaatari inhabited by ten-thousands to a few hundred
camping in front of a border in Horgos) and the image quality and pixel resolution (from
nearly visible people on the Calais image to tents floating into each other in the Basroch
image).

Each image was acquired from Google Earth Pro and dwelling annotations on the image
were created using QGIS following the same procedure as described in 2.2.1. Fortunately,
the georeferencing could be done much coarser because it didn’t have to fit to already ex-
isting data and was only necessary for mapping the annotations with the image. Creating
the annotations was easy from a technical point using QGIS but often proofed difficult on
image with lower image quality. It is often hard, even for a human observer to figure out
what one tent is, how much tents there are in one structure, where it seems that tents flow
into each other, and how many tents are in one of these structures. These difficulties are
documented in Figure 2.14 on an input image from the camp Horgos. When annotations
for all images are available they are loaded in the training data generation workflow. To
get the best results and due to the different characteristics in each image, the four param-
eters mentioned above have to be adjusted for each image. The parameters are adjusted
by visually analyzing the debug images outputted in the workflow. The used parameters
can be seen in the Table below. It can be seen that images with a good contrast require
a higher threshold than images with a low contrast. A higher threshold makes it harder
for a pixel to be added to a region. On images with lower contrast and image quality, the
threshold has to be set lower due to the inhomogeneity of regions caused by the worse

2. Methodology 32

Table 2.1: Parameter for the satellite images used for training data generation

Image Name ID Threshold Offset (px) MinBox (px) MaxBox (px)
Basroch 1 10 13 0 70
Calais 2 17 10 0 90
Horgos 3 5 12 0 55
Idomeni 4 7 10 1 25
Juba 5 8 7 1 44
Kara Tepe 6 9 12 20 130
Zaatari 7 7 7 0 30
Moria 8 4 15 4 150
Tabanovce 9 5 15 8 150

image quality. Often on lower quality images not the whole dwelling is found. To encapsu-
late the whole tent it is a good idea to choose a higher threshold even if some information
about the form could be lost. The minBox parameter controls the minimal Box extend. It
can be used to either filter regions where only the initial pixel is added to the region (or not
filter them if necessary) or to filter small results when it is known, that tents have a mini-
mal size in one camp (see Kara Tepe). The maxBox filter is best for filtering out regions
where several dwellings were detected. The used parameters for every image are shown
in Table 2.1

As a final step, the found ground truth bounding boxes are sorted into a training- and
a validation-set. The boxes are sorted regarding their y-coordinate on the input image,
making a cut at 70% of the top of the image going into the training set, the rest in the
validation set. The exact split-coordinate is calculated in regard to the tiles created out of
the input image, ensuring that a tile is either fully in the training or in the validation-set. If
the ground truth bounding box is on a tile in the upper 70% of the image, it is added to the
training-set, if it is located on a tile in the remaining 30% of the image, it is sorted into the
test-set.

Faster R-CNN Training

When a finished training dataset is created the training of the Faster R-CNN can be
started. Detectron supplies various out-of-the-box functions for creating, training and test-
ing networks from the R-CNN family. Training is started by train.py which is an adaptation
of a Detectron script. As an input it takes a config file and the output-directory where
the trained weights are supposed to be saved to. The script outputs the trained network
weights saved in a .pkl file, a file called net.pbtxt describing the trained network and a file
called param_init_net.pbtxt, describing how the net has to be initialized.

Creation, training and testing are controlled by detectron config values that can be found
in detectron/detectron/core/config.py. For an individual network, an additional yaml-config

2. Methodology 33

file has to be written. There, the network-specific configuration parameters are set. De-
tectron contains various configuration files for baseline-networks trained at FAIR. For HU-
MAN+ the Detectron configuration:

detectron/configs/12_2017_baselines/e2e_faster_rcnn_R-101-FPN_2x.yaml

was used as a basis for the HUMAN+ configuration file:

detectron/configs/human_plus/e2e_faster_rcnn_R-50_h+_long.yaml

In the first section of the file called MODEL, a CNN backbone, a ResNet50, a state of
the art CNN-architecture developed in (He, Zhang, Ren, Sun, 2016) and pre-trained on
ImageNet, the number of classes the Faster R-CNN is trained on and that the model is
built as a Faster R-CNN is defined. The parameter NUM_GPUs specifies if multi-GPU
training should be done. The next section SOLVER specifies the training algorithm by
defining different parameters concerning the learning rate and the length of the training.
The values in the detectron-baseline are kept for HUMAN+, only the training iterations
are set to a fifth of the original length. In the next section, five anchor-sizes for the RPN
network are specified and the detectron-intern building parameters for the RPN are set.

The last two modules specify the train and the test procedure. For training, a link to
the weights for a CNN pre-trained on ImageNet is specified. These weights are offered
by FAIR. Further, the datasets which the network is going to be trained and tested on
are specified, the maximum input sizes of the network as well as the SGD batch sizes.
The train- and validation-dataset has to be registered in the detectron software in de-
tectron/detectron/datasets/dataset_catalog.py and the actual data has to be copied into
detectron/detectron/datasets/data using a symlink. The parameters for testing are similar.
First the test dataset is specified, then input scales follow. Specific for training are some
post-processing parameters, filtering the bounding boxes found by the Faster R-CNN.

2.2.3. Dwelling Detection Workflow

When a Faster R-CNN is trained, it can be used for the main application which is doing the
dwelling detection. The workflow for analyzing a new satellite image of a refugee camp is
controlled in the analyze_sat.py script.

Loading and Processing Satellite image

For running a trained Detectron net like the Faster R-CNN trained before, Detectron offers
a sample script on images in an input folder. This script is adapted for the application and
can be found in interference.py. Before utilizing the Faster R-CNN the input satellite image
has to be processed to a form that fits in the network. The workflow for doing so begins
by loading the new raster with rasterio. This allows collecting the metadata regarding
georeferencing in the case that the input image is georeferenced. The geoinformation

2. Methodology 34

are needed to visualize the dwelling detection results in the software developed in the
HUMAN+ project. So, the image is cut into tiles, following the workflow used in the training
data generation, described in 2.2.1. Further, for each tile a JSON file is created, storing
the results after analysis.

Interference

After processing the input image, the interference workflow is started. First, the parame-
ters of the workflow have to be set. The basic testing configurations are set in the .yaml
file that was already used for training the network. Further the weights for the network
defined in the .yaml file have to be specified. The weights are the output of the training
process, stored in a .pkl file. In addition, the folder containing the images to be analyzed,
the image extension of the images that are going to be analyzed and the output folder,
storing the visual representation of the analysis has to be set. When all parameters are
set, the interference process is started.

The interference script in interference.py resembles mostly the script offered by Detectron.
The way the input parameters are handed over is changed to fit it into the applications
workflow. Further a method to write the found objects and their class scores into a JSON
file is added. The script first loads all parameters: the Faster R-CNN weights, the Faster
R-CNN initialized with the loaded weights, the dataset definition and a list all the images it
has to test. The dataset definition contains the classes that are tested. Then interference
is carried out for every image specified to be tested using detectron.core.test_engine. The
results of the interference are stored in the variable cls_boxes, which are written in the tile-
specific JSON file created before. Finally, the script visualizes the found objects in a tile
and saves the processed tile as an image in the output folder specified. This image can
be used for debugging purpose.

Analyzing Tiles

The bounding boxes obtained by Detectron have class securities from 0.05 to nearly 1. A
class security of 0.05 denotes that the Faster R-CNN is 5% sure that the object contained
in the bounding box really is a tent and, due to the fact that only one class was trained,
95% sure that the object in the bounding box is not a tent but background or another
object. This is unsuitable for a reliable prediction. Bounding boxes with a class security
lower than 0.5 can be identified as negative result because the network is more than 50%
sure that the bounding box is not encapsulating a tent. Therefore it is important to set a
threshold for which bounding boxes to count as real findings. As in (Ghorbanzadeh et al.,
2018) I set the threshold for a bounding box being a dwelling or not to 0.85. All accepted
bounding boxes are then written in a new JSON file. Before writing the coordinates into
the JSON file, they are transferred from being coordinates on the tile to coordinates on the
actual input image, using the position of the tile in the input image, stored in its filename.

2. Methodology 35

The accepted bounding boxes on the original input image are further drawn on the input
image and the processed image is saved.

Besides the actual found dwellings and the calculated number of residents living in them,
it is from great importance in a real life application, to give a measurement how good the
estimation in general is on the whole image. This confidence metric can be calculated
using the class security values outputted by the Faster R-CNN and has to be image-
specific. Image-specific information is important, because the detector works differently
on differing images. Detection quality depends on many factors: The image quality, the
camp structure and how close the image is to training data are some. One option for
estimating the per-image quality of the detection is the processed input image, outputted
after evaluating the bounding boxes. Still, in HUMAN+ there should also be a numeric,
more concrete and easy to interpret value for the quality of the detection on one image.
One option for a confidence value would be to just give out the classification threshold
used for filtering positive and negative bounding boxes. Problematic with this approach
is, that it only gives a coarse and little meaningful estimate. It gives a measurement that
the network is sufficiently sure that the found boxes are dwellings. Unfortunately, this is
just a statement about how the detector is working in general. It gives no image-specific
information about the findings.

To get a measurement, how sure the detector is on a distinct image, the bounding boxes
with a class security between 0.5 and 0.85 are considered. These values are chosen
because for bounding boxes that have a class security bigger than 0.5 it can be said, that
the network is surer that the content in the box is a dwelling than that it is something differ-
ent or belonging to the background while 0.85 is the threshold where bounding boxes are
classified as positives. The considered bounding boxes can therefore be seen as bound-
ing boxes, where the detector is in doubt about how to classify the content of the box.
The confidence score is calculated by dividing the number of bounding boxes with class
securities bigger than 0.85 through the number of bounding boxes with class securities
bigger than 0.5. The idea is that the more bounding boxes have class securities on the
interval between 0.5 and 0.85 the more uncertain is the detector.

Processing Results

After having trained a working Faster R-CNN which yields acceptable to great results on
all test-images of camps the ability of the net to perform its core task was tested. The goal
of dwelling detection is to calculate the number of people living in a camp from a satellite
image.

A common approach is to count the number of dwellings in a camp and to multiply that
number with a coefficient describing how many people are in a tent in a camp in average
[Watkins 1985]. A more precise way is to take the size of the dwellings, an information the
Faster R-CNN is outputting in pixel-values, into account.

2. Methodology 36

The first idea to take this information into account was to define three categories: Large,
medium and small tents. Each of these categories had a parameter stating how many
people were living in a dwelling of the respective categories. This approach has two prob-
lems: First, the distinction of different tent sizes is quite coarse; in reality there are more
than three tent sizes. Second, and more important, the way each dwelling is categorized
is that its size is calculated and if the size is under a threshold, the bounding box is cat-
egorized to one of the categories. Therefore, this method is dependent of the absolute
number of pixels in a bounding box. This is a huge problem when looking at satellite im-
ages shot from a different height or with a different pixel resolution. The same tent can
have a different size on different satellite images. In conclusion, it is more guessing a
number than carrying out a reliable calculation.

Therefore, a better approach for calculating the number of people in a camp from the
results of the faster R-CNN regarding the different characteristics of satellite images was
implemented:

The implemented approach is independent from further additional information than the
output of the Faster R-CNN and works solely on the data outputted of the network. The
key assumption is, that there is a variance of tent sizes with different numbers of people
in them in one camp. Therefore, to the smallest tent size and the largest tent size the
number of people possibly living in those tents is assigned. For the tent sizes between
those anchor points, the number of people living in a tent is interpolated linearly. The
calculated number is not dependent of the absolute number of pixels in a bounding box but
of the sizes of the bounding boxes in one image in relation to each other. This approach
is implemented with promising results 2.3.2.

2.2.4. Implementation Details

The application is run in a Docker-container, running on Nvidia-Docker 2. The container
contains the HUMAN+ application described in this thesis and the Detectron software.
The software uses the libraries cocoapi, Cython, detectron, Fiona, future, matplotlib,
mock, numpy, opencv-python, protobuf, pyproj, python3-gdal, pytorch, queuelib, rasterio,
scikit-image, scipy, six and setuptools.

Some minor modifications were made to the Detectron software to fit it into the HUMAN+
workflow.

2. Methodology 37

Figure 2.14: Input Data creation on a satellite image of the camp Horgos: Due to the bad image
quality and the low contrast between dwellings and background, the annotation is
complicated.

2. Methodology 38

2.3. Results

2.3.1. Machine Learning Metrics

To get the best Faster R-CNN for the dwelling detection task, various training passes with
different parameters, specified in Table 2.2, were conducted.

The parameters changed were the amounts of camps that were included in the training
data and the training-iterations used for training the network. For every new training set
containing a new set of camps, a new validation set was created as described in 2.2.2.
Each trained net was tested on the validation set created with the last training set. This
validation set contains all images trained on. It has the full diversity in structure, organiza-
tion, localization and image quality that is considered in this thesis. The mAP is measured
using the COCO-evaluation metrics. The results of the training can be seen in Table 2.2.

The first four training passes have been first experiments to check if the method is working
in general. The first training and testing were done on Juba, the only camp with available
UNHCR annotations. In Juba, two separate camps where annotated, the main camp,
Juba1, and a smaller peripheral camp, Juba2. Alas, the image quality and the training data
generation quality of Juba2 are poor, so Juba2 was dropped from training and testing from
training four on. Training three and four were conducted after acquiring two more satellite
images and creating training data on them. At this point, no manual adjustments on the
training data process using the four parameters introduced in 2.2.2 were made. This
low level on adjustments and optimizations can explain the generally low mean Average
Precision (mAP) around 20%.

The last three training passes were conducted after optimizing the training process, fully
defining the four training data generation parameters. Further they include an enhanced
set of camps in the training set. In training five, seven images of different camps are used
for training the network. Further, optimized parameters have been used for creating the
training data set. The parameters can be found in Table 2.1. The enhanced training set
leads to a huge jump in detection performance of the network on the full validation set
with an increase of 28,5% in mAP compared with the earlier experiments. The increase
in mAP denotes that the Faster R-CNN finds more of the ground truth boxes defined in
the validation set. Still, a visual analysis on the output of the Faster R-CNN when using
the available images of camps as input showed that there were still dwellings that were
not found and a quite high number of False Positives. Therefore the network was trained
two times as long as before, using 36.000 iterations, which is a fifth of the training time
used for the baseline training of the COCO dataset, conducted by FAIR. This leads to
a quite high increase in performance of the network, increasing mAP for around 7.4%.
This shows that a longer and finer training leads to better results. The training iterations
were not increased after that to minimize the risk of overfitting the network. Overfitting is

2. Methodology 39

Table 2.2: Parameter and mAP for all training passes

Training Camps Training
Iteration

mAP
(COCO) in %

1 Juba1 18.000 19,9
2 Juba1, Juba2 18.000 19,4
3 Juba1, Juba2, Idomeni 18.000 20,6
4 Juba1, Zaatari, Idomeni 18.000 20,2

5 Basroch, Calais, Horgos,
Idomeni, Juba1 Kara Tepe, Zaatari

18.000 49,1

6 Basroch, Calais, Horgos,
Idomeni, Juba1, Kara Tepe, Zaatari

36.000 56,5

7
Basroch, Calais, Horgos, Idomeni,
Juba1, Kara Tepe, Moria, Tabanovce,
Zaatari

36.000 57,1

a phenomena which occurs when “standard backpropagation learning builds up brittle co-
adaptions that work for the training data but do not generalize to unseen data” (Srivastava
et al., 2014)

For the last training pass, the camps Moria and Tabanovce were included in the training
data after achieving unsatisfactory results when testing the network trained in Training 6
on those images. Including those two images increases the mAP for 0,6% and yields
better results for the two added images. This is explainable with the observation that both
Moria and Tabanove show dwellings with structures not existent in the other camps.

2.3.2. Validity of Dwelling Detection

After having validated the performance of the trained Faster R-CNN, experiments on the
dwelling detection algorithm were conducted. To test its validity, the number of people
living in the camps at the time the related images were taken were researched (see Ap-
pendix A.1).

The analysis routine was run once with the initial algorithm classifying dwellings after their
actual pixel size (Deviation 1) and twice with the linear interpolation approach (Deviation
2/3), using different parameter each iteration. For the first iteration the smallest tent was
defined to have 3 inhabitants and the largest to have 8. For the second iteration the small-
est tent was defined to have 3 inhabitants and the largest to have 12 inhabitants. Con-
cerning the threshold, when a bounding box was considered as a dwelling, the dwelling
detection workflows were run with a variable threshold fitted for each camp in the first two
approaches and with a fixed threshold of 0.85 in the third approach. The threshold was
set to a fixed value after developing the confidence metric honoring the image-specific
aspects of each input image. The absolute numbers of found tents and estimated people

2. Methodology 40

Figure 2.15: Deviations of the actual and the estimated numbers per camp.

as well as the official number of inhabitants for each camp can be found in Appendix A.1,
Figure A.1 and Figure A.2.

To evaluate the results, the deviation of the estimated and the actual inhabitants per camp
were calculated in absolute numbers and in percentage of the deviation to the actual
number (Figure 2.15). After that, the mean and the median over the deviations of all
camps were calculated for each method.

Concerning the absolute numbers the estimations were devided from the official. There-
fore, a negative value indicates that the estimation is too high; a positive number indicates
that the estimation is too low. The percentage values are calculated using absolute val-
ues. It can be seen, that the deviation in percentage is higher for camps with a low number
of actual residents living in it and therefore small deviations have a higher impact on the
resulting number. Taking a first look at the results, it falls into the eye that the camp of
Horgos has a high deviation in percentage and can be seen as an outlier. This can be
explained with the low absolute number of inhabitants in the camp. Further the source
could be inaccurate. Therefore the averages and mean values were calculated with and
without the camp Horgos.

Looking at the average and mean values, Approach 1 has the middle results in the cate-
gories Average, Average without Horgos and Median with approach 3 being 0.4% to 1.4%

2. Methodology 41

worse results. It is important to mention that the parameters (small, medium and large
tent, threshold) were highly tuned to achieve fitting results, while no fine-tuning on the pa-
rameters were applied to Approach 3. In the real HUMAN+ application it is not anticipated
and further not possible that users fine-tune the algorithm parameters for each camp. Any-
how, fine tuning is not possible because the values towards which the parameters have to
be optimized are not known. Therefore, Approach 1 is not suitable for a dwelling detection
application.

Approach 2 is winning in the categories Average, Average without Horgos and Median.
Approach 2 delivers generally well results because it estimates the number of people
lower and more conservative than the other two approaches. Therefore, in camps with
fewer actual inhabitants, where Approach 1 & 3 estimate a number of inhabitants too high
resulting in bad percentage values, Approach 2 is near the official values. Further, in
camps with a very high number of inhabitants, the lower estimated values doesn’t fall that
much into weight. It also needs to be remarked that Approach 2 is using the optimized
threshold values for each camps that Approach 1 is using.

Still, Approach 3 shows it strength in the category Median without Horgos, having a result
which is 10.6% better than the second best value. The median is showing the main
emphasis of a distribution. The high value in the last category indicates that eliminating
the outliners, Approach 3 is giving the most stable estimates compared to the other two. It
further is the most realistic approach because it relies on no fine-tuning of parameters.

3. Outcome 42

3. Outcome

3.1. Discussion

In this Bachelor Thesis I developed a Dwelling Detection application using a Faster R-
CNN. To achieve this, I showed the various steps, challenges and considerations I had
to take to develop this application. I could show that it is possible to develop such an
application using open software and data. Therefore, the work hypothesis that machine
learning should be usable to analyze satellite imagery could be confirmed. Still, much
work can be further done on this project and on this topic.

First of all, it is beyond the scope of this thesis to detect refugee camps in satellite im-
ages.

Then it is out of scope to develop the best possible algorithm for each of the different parts
of the software. This thesis relies on standard software and methods, each aspect of the
application can be enhanced in itself. Enhancements can be considered beginning with
the input data itself, satellite images extracted from Google Earth. They were extracted
by zooming to a zoom level where the whole camp could be seen and then extracted
at once. Extracting multiple parts of one image and stitching them together or buying
the original satellite images could greatly enhance the quality of the results. Buying the
original images would also make georeferencing each image by hand, which led to minor
distortions of the input image, unnecessary.

The next step, the finding of the regions and the generation of the bounding boxes can be
enhanced. The used algorithm is a pretty basic and easy to implement algorithm. A more
complex image segmentation algorithm using seed points could yield drastically more
exact results. (H. Zhu et al., 2016) offer a detailed review over state-of-the-art algorithms
in that field.

It has to be noted, that this thesis is not a review of modern machine learning architectures
but a study how to best make use of already existing and tested techniques. Therefore,
the focus of this thesis was not on the optimization of a CNN architecture and its super
parameters. Regarding the choice of the right architecture, (Han et al., 2018) offer a de-
tailed study about modern deep object detection techniques. Still, it is of great importance
to understand how the underlying techniques work to develop and evaluate an application
built with them. First approaches in this direction were taken at Fraunhofer IAIS in the
project DeepGeo, where a visualizer for the architecture and learned features of a CNN
was developed (Landenberg, 2019).

3. Outcome 43

An interesting and concrete next step following this thesis would be to change the Deep
Learning Architecture from a Faster R-CNN to a Mask R-CNN (He et al., 2017) like (Quinn
et al., 2018) did in their approach. Mask-RCNN enables semantic segmentation making
it possible to detect a dwelling on pixel-basis. When the spatial resolution of a pixel in the
satellite image and a parameter, how much space one inhabitant of a refugee camp is
occupying is available, very accurate results are possible.

Further, some specific problems and approaches worth investigating occurred during the
development and writing of this thesis.

When looking at the input into the Dwelling Detection classifier: A problem with satellite
imagery derived from optical sensors is that it can be heavily distorted by cloud cover or
atmospheric haze. A solution proposed by (Braun & Hochschild, 2017) is to further use
radar satellite data to analyze refugee camps. Radar data is not affected by atmospheric
conditions.

Regarding the output of the Faster R-CNN, it occurred that when analyzing not seen
satellite images, the network outputs worse results as suspected when looking at the
metrics derived when testing it with the test set. The main reason for that is that the test
set is actually the validation set. It is created from the same images the train set is created
on and was used for training. This is useful for checking if the network learned well on
the images it was trained on but gives no information how it handles new situations, be
it different backgrounds, different dwellings, different image qualities or different spatial
resolutions. Creating a unique test set containing not seen dwellings from the camps that
training was conducted on and adding images of camps that were not used in the train set
could give better performance estimates.

A reason for worse results on images not seen by the network while training than on
images seen by the network while training can be overfitting as described in 2.3.1. This
can be prevented by adding additional data augmentation before fitting the trained images
in the network for training. (Quinn et al., 2018) vary the brightness and scale and randomly
rotate and flip training images. This could be a useful addition to the training process.

Processing the results of the Faster R-CNN is an important step in the Dwelling Detection
workflow: Only here the actual information looked for can be derived. In that stage, two
problems occurred.

The first problem concerns the estimation of inhabitants of one camp. In the current
implementation, the sizes of dwellings only considered after interference of the Faster
R-CNN. When defined carefully under consideration of special domain knowledge, differ-
ent tent sizes and usage forms of dwellings can be defined in training data and therefore
be learned by the neural network. Each dwelling type would be its own trainable class.
(Ghorbanzadeh et al., 2018) use such a multiple class approach in their CNN implemen-
tation.

Another approach for estimating the inhabitants of a camp including the sizes of tents
relies on the spatial resolution of one pixel of a satellite image. Given a parameter, how

3. Outcome 44

much space one refugee is occupying in a tent, the footprint of one dwelling can be multi-
plied with this parameter. The footprint of the dwelling has to be calculated from the output
of the detection network. The approach is used in (Quinn et al., 2018) using dwelling seg-
mentations to calculate the footprint of a dwelling.

The second problem concerns the improvement of an already trained dwelling detector by
domain experts. Due to the high variation in satellite imagery of the earth, certain struc-
tures on one image can strongly resemble tents on other. This becomes apparent when
looking at satellite images of desert-like environments like the Rukban-image, where here
and there white spaces appear on the ground. These strongly resemble white dwellings
on other satellite images and often cause false positives. (Quinn et al., 2018) suggest
an assisted mapping process to minimize the number of false positives. They propose
letting experts adjust the output of the trained detector and train the net with the adjusted
ground truth data. A further enhancement of this method could be to create a negative
background class. In Addition to just delete false-positives, they could be declared to be
background and therefore the wrong solution. This method is called “bootstrapping” or
“hard negative mining” (Sung, 1996). The technique is already used in the Faster R-CNN
training process but could be enhanced by manual input.

3.2. Conclusion

In this thesis I could show that my assumption, that it is possible to build an object detector
and classificator for dwelling extraction using a Faster R-CNN is correct. My classifier is
able to detect the dwellings it was trained on and also finds objects in images it has not
seen before. Further, false positives are not as frequent as I feared. False Positives could
have been a problem regarding the diverse structures and manifestations of the different
camps. A huge part in holding off False Positives is the post-detection filtering mechanism
created.

To achieve these results, I had to build up a machine learning environment. It has been
shown that for implementing a successful machine learning classifier it is not enough to
just build a sophisticated architecture. A huge importance lies on the data: the data qual-
ity, choosing the right data, creating training data and storing them in the right format.
Especially writing your data in the Microsoft COCO format is an important step in every
object detection machine learning project. Further it is from great importance when using
already existing software to adapt them correctly to one’s own problem. Even when Face-
books Detectron software is a powerful and sophisticated tool, a great deal of adaption
has to be done to fit it into one’s own workflow.

Building up a Faster R-CNN workflow is a great achievement. Anyway, it is clear that build-
ing on these results still a lot of improvements can be made. More in-detail experiments
on the trained Faster R-CNN followed by a reevaluation of the networks architecture could

3. Outcome 45

improve the detection results. Further tackling the problem of image segmentation us-
ing a Mask R-CNN would be the logical next step when thinking about new directions to
go. This would involve improving the region detection algorithm while creating the training
data. Also the method to estimate the number of people from the found dwellings could
be enhanced.

A. Appendix 46

A. Appendix

A.1. Sources for the inhabitants of the found Refugee Camps

Figure A.1: Official Numbers of Inhabitants in one camp at the time of the recording of the satel-
lite image

A. Appendix 47

Figure A.2: Results of the tests of the Faster R-CNN and the estimation algorithms

A.2. Used satellite images

A. Appendix 48

Figure A.3: Basroch

Figure A.4: Calais

A. Appendix 49

Figure A.5: Horgos

Figure A.6: Calais

A. Appendix 50

Figure A.7: Juba

Figure A.8: Kara Tepe

A. Appendix 51

Figure A.9: Moria

A. Appendix 52

Figure A.10: Rukban

A. Appendix 53

Figure A.11: Tabanovce

A. Appendix 54

Figure A.12: Zaatari

B. Bibliography 55

B. Bibliography

References

Aravena Pelizari, P., Spröhnle, K., Geiß, C., Schoepfer, E., Plank, S., & Taubenböck, H.
(2018, May). Multi-sensor feature fusion for very high spatial resolution built-up area
extraction in temporary settlements. Remote Sensing of Environment , 209, 793–
807. Retrieved 2019-04-17, from https://linkinghub.elsevier.com/retrieve/
pii/S0034425718300312 doi: 10.1016/j.rse.2018.02.025

Beznec, B., Speer, M., & Mitrović, M. S. (2016). Governing the Balkan route: Macedo-
nia, Serbia and the European border regime. Rosa Luxemburg Stiftung Southeast
Europe.

Bjorgo, E. (2000, January). Using very high spatial resolution multispectral satel-
lite sensor imagery to monitor refugee camps. International Journal of Remote
Sensing, 21(3), 611–616. Retrieved 2019-08-12, from https://doi.org/10.1080/
014311600210786 doi: 10.1080/014311600210786

Braun, A., & Hochschild, V. (2017). Potential and Limitations of Radar Remote Sensing
for Humanitarian Operations. GI_Forum, 1, 228–243. Retrieved 2019-04-17, from
http://hw.oeaw.ac.at?arp=0x00369d99 doi: 10.1553/giscience2017_01_s228

Caffe2. (2018, May). Caffe2 and PyTorch join forces to create a Research + Production
platform PyTorch 1.0. Retrieved 2019-08-18, from http://caffe2.ai/blog/2018/
05/02/Caffe2_PyTorch_1_0.html

Campbell, J. B., & Wynne, R. H. (2011). Introduction to Remote Sensing, Fifth Edition.
Guilford Press. (Google-Books-ID: NkLmDjSS8TsC)

Cao, G., Wang, B., Xavier, H.-C., Yang, D., & Southworth, J. (2017, December). A new dif-
ference image creation method based on deep neural networks for change detection
in remote-sensing images. International Journal of Remote Sensing, 38(23), 7161–
7175. Retrieved 2019-04-17, from https://www.tandfonline.com/doi/full/10
.1080/01431161.2017.1371861 doi: 10.1080/01431161.2017.1371861

Cheng, G., Han, J., & Lu, X. (2017, October). Remote Sensing Image Scene Clas-
sification: Benchmark and State of the Art. Proceedings of the IEEE , 105(10),
1865–1883. Retrieved 2019-04-17, from http://ieeexplore.ieee.org/document/
7891544/ doi: 10.1109/JPROC.2017.2675998

Consortium, T. C. (2019). Common Objects in Context. Retrieved from http://
cocodataset.org/#detection-eval

Dalal, A., Darweesh, A., Misselwitz, P., & Steigemann, A. (2018, December). Planning
the Ideal Refugee Camp? A Critical Interrogation of Recent Planning Innovations

References 56

in Jordan and Germany. Urban Planning, 3(4), 64. Retrieved 2019-05-28, from
https://www.cogitatiopress.com/urbanplanning/article/view/1726 doi: 10
.17645/up.v3i4.1726

Dalal, N., & Triggs, B. (2005, June). Histograms of Oriented Gradients for Human Detec-
tion. In C. Schmid, S. Soatto, & C. Tomasi (Eds.), International Conference on Com-
puter Vision & Pattern Recognition (CVPR ’05) (Vol. 1, pp. 886–893). San Diego,
United States: IEEE Computer Society. Retrieved from https://hal.inria.fr/
inria-00548512 doi: 10.1109/CVPR.2005.177

EPSG. (2019). Retrieved 2019-08-07, from http://www.epsg.org/EPSGhome.aspx
EPSG Geodetic Parameter Registry. (2019). Retrieved 2019-08-07, from http://www

.epsg-registry.org/
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010,

June). The Pascal Visual Object Classes (VOC) Challenge. International Journal of
Computer Vision, 88(2), 303–338. Retrieved 2019-08-22, from https://doi.org/
10.1007/s11263-009-0275-4 doi: 10.1007/s11263-009-0275-4

Ghorbanzadeh, O., Tiede, D., Dabiri, Z., Sudmanns, M., & Lang, S. (2018, Septem-
ber). DWELLING EXTRACTION IN REFUGEE CAMPS USING CNN – FIRST
EXPERIENCES AND LESSONS LEARNT. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1, 161–
166. Retrieved 2019-04-17, from https://www.int-arch-photogramm-remote-sens
-spatial-inf-sci.net/XLII-1/161/2018/ doi: 10.5194/isprs-archives-XLII-1-161
-2018

Giada, S., Groeve, T. D., Ehrlich, D., & Soille, P. (2003, January). Information extrac-
tion from very high resolution satellite imagery over Lukole refugee camp, Tan-
zania. International Journal of Remote Sensing, 24(22), 4251–4266. Retrieved
2019-08-12, from https://doi.org/10.1080/0143116021000035021 doi: 10.1080/
0143116021000035021

Girshick, R. (2015). Fast R-CNN. In (pp. 1440–1448). Retrieved 2019-
04-17, from http://openaccess.thecvf.com/content_iccv_2015/html/Girshick
_Fast_R-CNN_ICCV_2015_paper.html

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation. In (pp. 580–587).
Retrieved 2019-04-17, from http://openaccess.thecvf.com/content_cvpr_2014/
html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. (Google-
Books-ID: omivDQAAQBAJ)

Han, J., Zhang, D., Cheng, G., Liu, N., & Xu, D. (2018, January). Advanced Deep-Learning
Techniques for Salient and Category-Specific Object Detection: A Survey. IEEE
Signal Processing Magazine, 35(1), 84–100. Retrieved 2019-09-01, from http://
ieeexplore.ieee.org/document/8253582/ doi: 10.1109/MSP.2017.2749125

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. In (pp. 2961–2969).
Retrieved 2019-07-31, from http://openaccess.thecvf.com/content_iccv_2017/
html/He_Mask_R-CNN_ICCV_2017_paper.html

References 57

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998, July). Support
vector machines. IEEE Intelligent Systems and their Applications, 13(4), 18–28. doi:
10.1109/5254.708428

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology , 160(1), 106–154.

Joulin, A., & Paris, F. (2015). Facebook AI Research. Learning Visual Features from
Large Weakly Supervised Data.

Katz, I. (2016). A network of camps on the way to Europe. Forced Migration Review(51),
17.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing sys-
tems (pp. 1097–1105).

Landenberg, A. v. (2019). Understanding Convolutional Neural Networks for Seismic
Features by Visualization (Master’s thesis, The University of Koblenz-Landau). Re-
trieved from http://publica.fraunhofer.de/dokumente/N-531812.html

LeCun, Y., Bengio, Y., & Hinton, G. (2015, May). Deep learning. Nature, 521(7553), 436–
444. Retrieved 2019-04-17, from http://www.nature.com/articles/nature14539
doi: 10.1038/nature14539

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . . Zitnick,
C. L. (2014). Microsoft COCO: Common Objects in Context. In D. Fleet, T. Pa-
jdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision – ECCV 2014 (Vol. 8693,
pp. 740–755). Cham: Springer International Publishing. Retrieved 2019-04-17,
from http://link.springer.com/10.1007/978-3-319-10602-1_48 doi: 10.1007/
978-3-319-10602-1_48

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2), 91–110.

QGIS Development Team. (2009). QGIS Geographic Information System. Open Source
Geospatial Foundation. Retrieved from http://qgis.org

Quinn, J. A., Nyhan, M. M., Navarro, C., Coluccia, D., Bromley, L., & Luengo-Oroz, M.
(2018, September). Humanitarian applications of machine learning with remote-
sensing data: review and case study in refugee settlement mapping. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 376(2128), 20170363. Retrieved 2019-04-17, from http://
rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.2017.0363 doi:
10.1098/rsta.2017.0363

Rasterio. (2019). Retrieved 2019-08-07, from https://rasterio.readthedocs.io/en/
stable/index.html

Ren, S., He, K., Girshick, R., & Sun, J. (2017, June). Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. Retrieved 2019-
04-17, from http://ieeexplore.ieee.org/document/7485869/ doi: 10.1109/
TPAMI.2016.2577031

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Fei-Fei, L. (2015,

References 58

December). ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision, 115(3), 211–252. Retrieved 2019-09-03, from https://
doi.org/10.1007/s11263-015-0816-y doi: 10.1007/s11263-015-0816-y

Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and
ROC: a family of discriminant measures for performance evaluation. In Australasian
joint conference on artificial intelligence (pp. 1015–1021). Springer.

Spröhnle, K., Tiede, D., Schoepfer, E., Füreder, P., Svanberg, A., & Rost, T. (2014,
September). Earth Observation-Based Dwelling Detection Approaches in a Highly
Complex Refugee Camp Environment — A Comparative Study. Remote Sensing,
6(10), 9277–9297. Retrieved 2019-04-17, from http://www.mdpi.com/2072-4292/
6/10/9277 doi: 10.3390/rs6109277

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1), 1929–1958.

Sung, K.-K. (1996, March). Learning and Example Selection for Object and Pattern
Detection. Retrieved 2019-08-20, from https://dspace.mit.edu/handle/1721.1/
6774

Sutton, T., Dassau, O., & Sutton, M. (2009). A gentle introduction to GIS. Chief Direc-
torate: Spatial Planning & Information, Department of Land Affairs, Eastern Cape,
South Africa.

Tiede, D., Krafft, P., Füreder, P., & Lang, S. (2017, March). Stratified Template Matching
to Support Refugee Camp Analysis in OBIA Workflows. Remote Sensing, 9(4),
326. Retrieved 2019-04-17, from http://www.mdpi.com/2072-4292/9/4/326 doi:
10.3390/rs9040326

Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective
search for object recognition. International journal of computer vision, 104(2), 154–
171.

UNHCR (Ed.). (2018). Global Trends - Forced Displacement in 2018 (Tech. Rep. No.
2018). Switzerland: UNHCR. Retrieved 2019-07-30, from https://www.unhcr.org/
statistics/unhcrstats/5d08d7ee7/unhcr-global-trends-2018.html

Zhang, L., Zhang, L., & Du, B. (2016, June). Deep Learning for Remote Sensing Data:
A Technical Tutorial on the State of the Art. IEEE Geoscience and Remote Sensing
Magazine, 4(2), 22–40. Retrieved 2019-04-17, from http://ieeexplore.ieee.org/
document/7486259/ doi: 10.1109/MGRS.2016.2540798

Zhu, H., Meng, F., Cai, J., & Lu, S. (2016, January). Beyond pixels: A compre-
hensive survey from bottom-up to semantic image segmentation and cosegmen-
tation. Journal of Visual Communication and Image Representation, 34, 12–
27. Retrieved 2019-09-01, from https://linkinghub.elsevier.com/retrieve/
pii/S1047320315002035 doi: 10.1016/j.jvcir.2015.10.012

Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017, De-
cember). Deep Learning in Remote Sensing: A Comprehensive Review and List
of Resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36. Re-
trieved 2019-04-17, from http://ieeexplore.ieee.org/document/8113128/ doi:

References 59

10.1109/MGRS.2017.2762307

C. Eidesstattliche Erklärung 60

C. Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorgelegte Abschlussarbeit selbständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche
kenntlich gemacht habe.

Köln, den 09.09.2019

Unterschrift
Lorenz Wickert

TH Köln

Gustav-Heinemann-Ufer 54

50968 Köln

www.th-koeln.de

