The Visit Quantification Monitoring Task

Given a set of
- consecutive time intervals $T = \{t_1, \ldots, t_n\}$,
- mobile entities $E = \{e_1, \ldots, e_m\}$, and
- arbitrary location sets $\Lambda = \{L_1, \ldots, L_m\}$
we want to monitor the visit quantities
- gross visits, average visits and entity coverage for visit class λ
for all tuples $(\tau \in T, L \in \Lambda, E, \lambda \in I_N)$.

approach ensures that:
- messages do not contain
 person related information (no id) → the coordinator cannot join messages
 of a person
- submission of statistics is
temporally disjoint from
visit events

\rightarrow coordinator cannot infer
current location of a user
or build personal mobility profiles

relationship to k-anonymity:
- level of k-anonymity = smallest visit count in
global frequency distribution for given location set
- lower bound = single location
- increase privacy by
 increasing location set sizes

the users’ rights
- approach allows opt-out and
 local configuration (e.g. typed
 location sets, minimum size)

Privacy-preserving Distributed Monitoring of Visit Quantities

Christine Kopp, Michael Mock and Michael May
Fraunhofer IAIS, Sankt Augustin, Germany

1. Motivation

Privacy must be respected!

Big Brother is watching you!

2. Visit Quantities

3. Distributed Computation

4. Communication Architecture

5. Privacy

• gross visits: total number of visits for a
given set of locations in a given time
interval (for entities with at least λ visits)
• average visits: average number of visits
of entities (with at least λ visits) in a
given time interval
• entity coverage: proportion of entities
visiting locations (at least λ times)

The Visit Quantification Monitoring Task

Current privacy approaches in trajectory data analysis as
k-anonymity or differential privacy require data centralization.

Crowd sourcing makes life better!

Fraunhofer IAIS, Sankt Augustin, Germany

http://www.iais.fraunhofer.de

http://lift-eu.org